【题目】已知函数有两个不同的极值点,,且.
(1)求实数的取值范围;
(2)设上述的取值范围为,若存在,使对任意,不等式恒成立,求实数的取值范围.
【答案】(1);(2).
【解析】
试题分析:(1)注意函数的定义域,对函数求导,令,则,根据方程有两个不等正根,求出的范围;(2)求出函数在上的单调性,并求出最大值,已知恒成立转化为恒成立,设,则的最小值大于即可,讨论函数的单调性,求出的范围.
试题解析:(1),
令,则,
根据题意,方程有两个不等正根,则即
解得,
故实数的取值范围是.
(2)由,得.
即或,
所以在和上是增函数,
因为,则,所以在上是增函数,
当时,
.
由题意,当时,恒成立,即
,即恒成立,
设,
则.
(1)当时,因为,则,所以在上是减函数,
此时,,不合题意.
(2)当时,若,即,因为,则,,
所以在上是增函数,此时,符合题意.
若,即,则,
当时,,则,所以在上是减函数,
此时,,不合题意.
综上可知,的取值范围是.
科目:高中数学 来源: 题型:
【题目】若直线与曲线满足下列两个条件:
(i)直线在点处与曲线相切;(ii)曲线在点附近位于直线的两侧.则称直线在点处“切过”曲线.
下列命题正确的是__________(写出所有正确命题的编号).
①直线在点处“切过”曲线;
②直线在点处“切过”曲线;
③直线在点处“切过”曲线;
④直线在点处“切过”曲线;
⑤直线在点处“切过”曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,飞镖的标靶呈圆盘形,圆盘被10等分,按如图所示染色为Ⅰ、Ⅱ、Ⅲ三部分,某人依次将若干支飞镖投向标靶,如果每次投射都是相互独立的.
(1)如果他投向标靶的飞镖恰有2支且都击中标靶,同时每支飞镖击中标靶的任意位置都是等可能的,求“第Ⅰ部分被击中2次或第Ⅱ部分被击中2次”的概率;
(2)如果他投向标靶的飞镖恰有4支,且他投射1支飞镖,击中标靶的概率为,设表示标靶被击中的次数,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校初三年级有名学生,随机抽查了名学生,测试分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )
A. 该校初三年级学生分钟仰卧起坐的次数的中位数为次
B. 该校初三年级学生分钟仰卧起坐的次数的众数为次
C. 该校初三年级学生分钟仰卧起坐的次数超过次的人数约有人
D. 该校初三年级学生分钟仰卧起坐的次数少于次的人数约为人.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018百校联盟TOP20一月联考】函数在处的切线斜率为.
(I)讨论函数的单调性;
(II)设, ,对任意的,存在,使得成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量分布在内,且销售量的分布频率
.
(Ⅰ)求的值并估计销售量的平均数;
(Ⅱ)若销售量大于等于70,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自个组,求随机变量的分布列及数学期望(将频率视为概率).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, ,其中为自然对数的底数.
(Ⅰ)讨论函数的单调性.
(Ⅱ)试判断曲线与是否存在公共点并且在公共点处有公切线.若存在,求出公切线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+(y-a)2=4,点A(1,0).
(1)当过点A的圆C的切线存在时,求实数a的取值范围;
(2)设AM、AN为圆C的两条切线,M、N为切点,当MN=时,求MN所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 是等边三角形, 为的中点,四边形为直角梯形, .
(1)求证:平面平面;
(2)求四棱锥的体积;
(3)在棱上是否存在点,使得平面?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com