精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD 中,PD⊥底面ABCD ,底面ABCD为正方形,PD=DC,E 、F 分别是AB、PB的中点.   
(1)求证:EF⊥CD ;    
(2)在平面PAD 内求一点G ,使GF⊥平面PCB ,并证明你的结论.
解:以DA、DC、DP所在直线为x轴、y轴、z轴建立空间直角坐标系(如图), 设AD=a,则D(0,0,0)、A(a,0,0)、B(a,a,0)、G(0,a,0),、P(0,0,a).
(1)证明:·(0,a,0)=0,
∴EF⊥DC
(2)设G(x,0,z),则G∈平面PAD.
由题要使GF⊥平面PCB,
只需

=·(0,-a,a)=
∴z=0.
∴点G的坐标为,即点G为AD的中点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案