精英家教网 > 高中数学 > 题目详情
已知m、n、s、t为正数,m+n=2,=9其中m、n是常数,且s+t最小值是,满足条件的点(m,n)是椭圆=1一弦的中点,则此弦所在的直线方程为( )
A.x-2y+1=0
B.2x-y-1=0
C.2x+y-3=0
D.x+2y-3=0
【答案】分析:由题设知()(s+t)=n+m+=,满足时取最小值,由此得到m=n=1.设以(1,1)为中点的弦交椭圆=1于A(x1,y1),B(x2,y2),由中点从坐标公式知x1+x2=2,y1+y2=2,把A(x1,y1),B(x2,y2)分别代入x2+2y2=4,得,①-②,得2(x1-x2)+4(y1-y2)=0,k=,由此能求出此弦所在的直线方程.
解答:解:∵sm、n、s、t为正数,m+n=2,=9,
s+t最小值是
∴()(s+t)的最小值为4
∴()(s+t)=n+m+=
满足时取最小值,
此时最小值为=2+2=4,
得:mn=1,又:m+n=2,所以,m=n=1.
设以(1,1)为中点的弦交椭圆=1于A(x1,y1),B(x2,y2),
由中点从坐标公式知x1+x2=2,y1+y2=2,
把A(x1,y1),B(x2,y2)分别代入x2+2y2=4,得

①-②,得2(x1-x2)+4(y1-y2)=0,
∴k=
∴此弦所在的直线方程为
即x+2y-3=0.
故选D.
点评:本题考查椭圆的性质和应用,解题时要认真审题,注意均值不等式和点差法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m,n,s,t∈R+,m+n=2,
m
s
+
n
t
=9
,其中m、n是常数,当s+t取最小
4
9
时,m、n对应的点(m,n)是双曲线
x2
4
-
y2
2
=1
一条弦的中点,则此弦所在的直线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n,s,t∈R+,m+n=2,
m
s
+
n
t
=9
,其中m、n是常数,当s+t取最小值
4
9
时,m、n对应的点(m,n)是双曲线
x2
4
-
y2
2
=1
一条弦的中点,则此弦所在的直线方程为
x-2y+1=0
x-2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m、n、s、t为正数,m+n=2,
m
s
+
n
t
=9其中m、n是常数,且s+t最小值是
4
9
,满足条件的点(m,n)是椭圆
x2
4
+
y2
2
=1一弦的中点,则此弦所在的直线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m、n、s、t∈R+,m+n=2,
m
s
+
n
t
=9
其中m、n是常数,且s+t的最小值是
4
9
,满足条件的点(m、n)是圆(x-2)2+(y-2)2=4中一弦的中点,则此弦所在的直线方程为
x+y-2=0
x+y-2=0

查看答案和解析>>

同步练习册答案