精英家教网 > 高中数学 > 题目详情
12.如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建一仓库,设AB=ykm,并在公路北侧建造边长为xkm的正方形无顶中转站CDEF(其中边EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且∠ABC=60°.
(1)求y关于x的函数解析式,并指出定义域;
(2)如果中转站四堵围墙造价为1万元/km,两条道路造价为3万元/km,问:x取何值时,该公司建中转站围墙和两条道路总造价M最低?

分析 (1)根据题意得AB=y且AC=y-1,在Rt△BCF中,BC=2CF=2x.然后在△ABC中利用余弦定理AC2=AB2+BC2-2•AB•BC•cosB的式子建立关于x、y的等式,解出用x表示y的式子,即可得到y关于x的函数解析式以及函数的定义域;
(2)由(1)求出的函数关系式,结合题意得出总造价M=$\frac{12{x}^{2}-3}{x-1}$-3+4x.然后换元:令x-1=t,化简得到M=16t+$\frac{9}{t}$+25,利用基本不等式算出当t=$\frac{3}{4}$时,M的最小值为49.由此即可得出当总造价M最低时,相应的x值.

解答 解:(1)∵AB=y,AB=AC+1,∴AC=y-1.
∵在Rt△BCF中,CF=x,∠ABC=60°,
∴∠CBF=30°,可得BC=2x.
由于2x+y-1>y,得x$>\frac{1}{2}$.
在△ABC中,根据余弦定理AC2=AB2+BC2-2•AB•BC•cosB,
可得(y-1)2=y2+(2x)2-2y•2x•cos60°,
即(y-1)2=y2+4x2-2xy,解得y=$\frac{4{x}^{2}-1}{2(x-1)}$.
∵y>0且x$>\frac{1}{2}$,∴x>1.
可得y关于x的函数解析式为y=$\frac{4{x}^{2}-1}{2(x-1)}$,(x>1).函数的定义域为(1,+∞).
(2)由题意,可得总造价M=3[y+(y-1)]+4x=$\frac{12{x}^{2}-3}{x-1}$-3+4x.
令x-1=t,则M=$\frac{12(t+1)^{2}-3}{t}$-3+4(t+1)=16t+$\frac{9}{t}$+25≥$2\sqrt{16t•\frac{9}{t}}+25$=49,
当且仅当16t=$\frac{9}{t}$,即t=$\frac{3}{4}$时,M的最小值为49.
此时x=t+1=$\frac{7}{4}$,y=$\frac{4{x}^{2}-1}{2(x-1)}$=$\frac{15}{2}$.
答:当x的值为$\frac{7}{4}$时,该公司建中转站围墙和道路总造价M最低.

点评 本题主要考查函数的应用问题,根据条件建立函数关系是解决本题的关键.同时考查了运算基本不等式求最值和余弦定理及其应用等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=sinαcosα的周期为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a,b∈R且a>b>0,则下列不等式中恒成立的是(  )
A.$\frac{1}{a}$-$\frac{1}{b}$>0B.sina-sinb>0C.2-a-2-b<0D.lna+lnb>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z与其共轭复数在复平面内的对应点(  )
A.关于实轴对称B.关于虚轴对称C.关于原点对称D.关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知实数x,y满足2x-y=4,则4x+${({\frac{1}{2}})^y}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.[x]表示不超过x的最大整数,若f′(x)是函数f(x)=ln|x|导函数,设g(x)=f(x)f′(x),则函数f=[g(x)]+[g(-x)]的值域是(  )
A.{-1,0}B.{0,1}C.{0}D.{偶数}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设复数z1=1+i,z2=$\sqrt{3}$+i,其中i为虚数单位,则$\frac{\overline{{z}_{1}}}{{z}_{2}}$的虚部为(  )
A.-$\frac{{1+\sqrt{3}}}{4}$iB.-$\frac{{1+\sqrt{3}}}{4}$C.$\frac{{\sqrt{3}-1}}{4}$iD.$\frac{{\sqrt{3}-1}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a>0,b>0,且4a+b=ab,则a+b的最小值为(  )
A.4B.9C.10D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是某几何体的三视图,其中正视图是正方形,侧视图是矩形,俯视图是半径为2的半圆,则该几何体的表面积等于16+12π.

查看答案和解析>>

同步练习册答案