分析 (1)根据题意得AB=y且AC=y-1,在Rt△BCF中,BC=2CF=2x.然后在△ABC中利用余弦定理AC2=AB2+BC2-2•AB•BC•cosB的式子建立关于x、y的等式,解出用x表示y的式子,即可得到y关于x的函数解析式以及函数的定义域;
(2)由(1)求出的函数关系式,结合题意得出总造价M=$\frac{12{x}^{2}-3}{x-1}$-3+4x.然后换元:令x-1=t,化简得到M=16t+$\frac{9}{t}$+25,利用基本不等式算出当t=$\frac{3}{4}$时,M的最小值为49.由此即可得出当总造价M最低时,相应的x值.
解答 解:(1)∵AB=y,AB=AC+1,∴AC=y-1.
∵在Rt△BCF中,CF=x,∠ABC=60°,
∴∠CBF=30°,可得BC=2x.
由于2x+y-1>y,得x$>\frac{1}{2}$.
在△ABC中,根据余弦定理AC2=AB2+BC2-2•AB•BC•cosB,
可得(y-1)2=y2+(2x)2-2y•2x•cos60°,
即(y-1)2=y2+4x2-2xy,解得y=$\frac{4{x}^{2}-1}{2(x-1)}$.
∵y>0且x$>\frac{1}{2}$,∴x>1.
可得y关于x的函数解析式为y=$\frac{4{x}^{2}-1}{2(x-1)}$,(x>1).函数的定义域为(1,+∞).
(2)由题意,可得总造价M=3[y+(y-1)]+4x=$\frac{12{x}^{2}-3}{x-1}$-3+4x.
令x-1=t,则M=$\frac{12(t+1)^{2}-3}{t}$-3+4(t+1)=16t+$\frac{9}{t}$+25≥$2\sqrt{16t•\frac{9}{t}}+25$=49,
当且仅当16t=$\frac{9}{t}$,即t=$\frac{3}{4}$时,M的最小值为49.
此时x=t+1=$\frac{7}{4}$,y=$\frac{4{x}^{2}-1}{2(x-1)}$=$\frac{15}{2}$.
答:当x的值为$\frac{7}{4}$时,该公司建中转站围墙和道路总造价M最低.
点评 本题主要考查函数的应用问题,根据条件建立函数关系是解决本题的关键.同时考查了运算基本不等式求最值和余弦定理及其应用等知识,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{a}$-$\frac{1}{b}$>0 | B. | sina-sinb>0 | C. | 2-a-2-b<0 | D. | lna+lnb>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-1,0} | B. | {0,1} | C. | {0} | D. | {偶数} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{{1+\sqrt{3}}}{4}$i | B. | -$\frac{{1+\sqrt{3}}}{4}$ | C. | $\frac{{\sqrt{3}-1}}{4}$i | D. | $\frac{{\sqrt{3}-1}}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com