精英家教网 > 高中数学 > 题目详情
已知数列{an}中a1=3,且an+1=2-
2an
,则a2009
=
 
分析:根据所给的数列的首项和递推式,写出数列的后面的项,写出几项以后可以看出数列具有周期性,且周期是4,看出要求的项与第一项的结果相同.
解答:解:∵a2=2-
2
3
=
4
3

a3=2-
2
4
3
=
1
2

a4=2-
2
1
2
=-2

a5=2-
2
-2
=3

a5=2-
2
3
=
4
3

∴可以看出数列是一个具有周期性的数列,且周期是4,
∴a2009=a1=3
故答案为:3
点评:本题考查数列的递推式,注意本题解决递推式所用的方法,不是求出数列的通项,有时有些题目求不出通项,而是根据写出的数列的几项求出结果.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=-10,且经过点A(an,an+1),B(2n,2n+2)两点的直线斜率为2,n∈N*
(1)求证数列{
an2n
}
是等差数列,并求数列{an}的通项公式;
(2)求数列{an}的最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=3n+4,若an=13,则n等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1为由曲线y=
x
,直线y=x-2及y轴
所围成图形的面积的
3
32
Sn为该数列的前n项和,且Sn+1=an(1-an+1)+Sn
(1)求数列{an}的通项公式;
(2)若不等式an+an+1+an+2+…+a3n
a
24
对一切正整数n都成立,求正整数a的最大值,并证明结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=n2+(λ+1)n,(x∈N*),且an+1>an对任意x∈N*恒成立,则实数λ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

查看答案和解析>>

同步练习册答案