分析 (1)根据导数和函数的极值得关系即可求出a的值,
(2)由函数f(x)在(1,2]单调递增,在[-2,1)上单调递减,分别求出端点值和极小值,即可求出最值.
解答 解:(1)∵f(x)=x3+ax2-9x,
∴f′(x)=3x2+2ax-9,
∵函数f(x)=x3+ax2-9x在点x=1处有极值,
∴1是3x2+2ax-9=0的根,
∴3+2a-9=0,
解得a=3;
(2)由于f′(x)=3x2+6x-9,x∈[-2,2],
令f′(x)=3x2+6x-9=0,解得x=1或x=-3(舍去),
当f′(x)>0,即1<x≤2时,函数f(x)单调递增,
当f′(x)<0,即-2≤x≤1时,函数f(x)单调递减,
∵f(x)=x3+3x2-9x在点x=1处有极值,
∴f(x)min=f(1)=1+3-9=-5,
∵f(-2)=-8+12+18=22,f(2)=8+12-18=2,
∴f(x)max=22.
点评 本题考查了导数和函数的极值最值的关系,掌握求最值的步骤是关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (-∞,$\frac{1}{4}}$) | C. | (0,$\frac{1}{4}}$] | D. | (0,$\frac{1}{4}}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com