| A. | $\sqrt{2}$ | B. | 2 | C. | $\frac{\sqrt{2}}{2}$ | D. | 1 |
分析 求出和y=x+1平行的直线和y=lnx相切,求函数的导数,利用导数的几何意义求出切点坐标即可得到结论.
解答 解:设与y=x+1平行的直线与y=lnx相切,
则切线斜率k=1,
∵y=lnx,∴${y}^{'}=\frac{1}{x}$,
由${y}^{'}=\frac{1}{x}=1$,得x=1.
当x=1时,y=ln1=0,即切点坐标为P(1,0),
则点(1,0)到直线的距离就是线y=lnx上的点到直线y=x+1的最短距离,
∴点(1,0)到直线的距离为:d=$\frac{|1-0+1|}{\sqrt{{1}^{2}+(-1)^{2}}}$=$\sqrt{2}$,
∴曲线y=lnx上的点到直线l:y=x+1的距离的最小值为$\sqrt{2}$.
故选:A.
点评 本题主要考查导数的几何意义,利用平移切线法结合导数的几何意义是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 从时间t到t+△t时,物体的平均速度 | B. | 在t时刻时该物体的瞬时速度 | ||
| C. | 当时间为△t时物体的速度 | D. | 从时间t到t+△t时物体的平均速度 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3ex+y-2e2=0 | B. | 3ex-y-2e2=0 | ||
| C. | (e2-3e)x+y+2e2-e3=0 | D. | (e2-3e)x-y+2e2-e3=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 96 | B. | 108 | C. | 180 | D. | 198 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com