精英家教网 > 高中数学 > 题目详情
16.一直线运动的物体,从时间t到t+△t时,物体的位移为△s,那么$\lim_{△t→0}\frac{△s}{△t}$为(  )
A.从时间t到t+△t时,物体的平均速度B.在t时刻时该物体的瞬时速度
C.当时间为△t时物体的速度D.从时间t到t+△t时物体的平均速度

分析 由导数的物理意义可知$\lim_{△t→0}\frac{△s}{△t}$表示在t时刻时该物体的瞬时速度.

解答 解:由导数的物理意义可知$\lim_{△t→0}\frac{△s}{△t}$表示从时间t到t+△t时,物体在t时刻时该物体的瞬时速度,
故答案选:B.

点评 本题考查导数的物理意义,考查变化率与导数的意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设$f(x)=\frac{1}{3}{x^3}-x+5$,当$x∈[{-\frac{3}{2},3}]$时,f(x)<m恒成立,则实数m的取值范围为(11,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.椭圆mx2+ny2+mn=0(m<n<0)的焦点坐标是(  )
A.$(0,±\sqrt{m-n})$B.$(±\sqrt{m-n},0)$C.$(0,±\sqrt{n-m})$D.$(±\sqrt{n-m},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设等差数列{an}的前n项和为Sn,且a1=2,a3=6.
(1)求数列{an}的通项公式;
(2)设数列$\left\{{\frac{1}{S_n}}\right\}$的前n项和为Tn,求T2016的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=2x3+6x2+m-1(m为常数)在[-2,2]上有最大值2,则此函数在[-2,2]上的最小值为(  )
A.-38B.-30C.-6D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知两条直线l1:x+2ay-1=0,l2:x-4y=0,且l1⊥l2,则满足条件a的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{1}{8}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{x^2}{a^2}$-$\frac{x^2}{b^2}$=1的右焦点为F,点A、B分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF∥OA,则双曲线的离心率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.斜率为2的直线l经过抛物线y2=8x的焦点,且与抛物线相交于A,B两点,线段AB的长为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.曲线y=lnx上的点到直线y=x+1的最短距离是(  )
A.$\sqrt{2}$B.2C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

同步练习册答案