分析 先求导数,然后根据函数单调性研究函数的极值点,通过比较极值与端点的大小从而确定出最大值,进而求出变量m的范围.
解答 解:f′(x)=x2-1=0
解得:x=1或-1
当x∈[-$\frac{3}{2}$,-1)或(1,3]时,f'(x)>0,函数单调递增,
当x∈(-1,1)时,f'(x)<0,函数单调递减,
∴f(x)max={f(-1),f(3)}max=11
由f(x)<m恒成立,
∴m>fmax(x)=11.
故答案为:(11,+∞)
点评 本题考查了利用导数求闭区间上函数的最值,求函数在闭区间[a,b]上的最大值与最小值是通过比较函数在(a,b)内所有极值与端点函数f(a),f(b) 比较而得到的,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 从时间t到t+△t时,物体的平均速度 | B. | 在t时刻时该物体的瞬时速度 | ||
| C. | 当时间为△t时物体的速度 | D. | 从时间t到t+△t时物体的平均速度 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com