精英家教网 > 高中数学 > 题目详情
4.已知实数x,y满足$\left\{{\begin{array}{l}{x-3y-6≤0}\\{y≤2x+4}\\{2x+3y-12≤0}\end{array}}\right.$,则z=x-y的最小值是(  )
A.-4B.-6C.$-\frac{2}{5}$D.0.

分析 画出满足条件的平面区域,求出角点的坐标,平移直线求出z的最小值即可.

解答 解:不等式组表示的平面区域如下图,

由z=x-y得:y=x-z,
直线过D(0,4)时,z最小,
故z的最小值是:-4,
故选:A.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若随机变量X~N(μ,σ2)(σ>0),则有如下结论:
P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974
高三(1)班有48名同学,一次数学考试的成绩服从正态分布,平均分为120,方差为100,理论上说在130分以上人数约为(  )
A.32B.24C.16D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线x2=2py (p>0),过点(0,4)作直线l交抛物线于A,B两点,且以AB为直径的圆过原点O.
(Ⅰ)求抛物线方程;
(Ⅱ)若△MNP的三个顶点都在抛物线x2=2py上,且以抛物线的焦点为重心,求△MNP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=ax2+bx+c(a≠0)经过点(-1,0),(0,0),(1,2).
(1)求f(x)的解析式;
(2)若数列{an}的前n项和Sn满足Sn=f(n),求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.离散型随机变量X~B(4,0.1),则D(X)=0.4
B.将一组数据中的每个数据都减去同一个数后,平均值与方差均没有变化
C.采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,16,27,38,49的同学均被选出,则该班学生人数可能为60
D.某糖果厂用自动打包机打包,每包的重量X(kg)服从正态分布N(100,1.44),从该糖厂进货10000包,则重量少于96.4kg一般不超过15包

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow a$=(1,x),$\overrightarrow b$=(1,x-1),若($\overrightarrow a$-2$\overrightarrow b$)⊥$\overrightarrow a$,则|$\overrightarrow a$-2$\overrightarrow b$|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等差数列{an}中,已知Sn是其前n项和,且a1-a4-a8-a12+a15=2,则S15=(  )
A.-30B.30C.-15D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一边长为3的正三角形的三个顶点都在球O的表面上,若球心O到此正三角形所在的平面的距离为$\sqrt{7}$,则球O的表面积为40π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a>0且a≠1,函数f(x)=$\frac{5{a}^{x}+3}{{a}^{x}+1}$+4loga$\frac{1+x}{1-x}$,其中-$\frac{1}{4}$≤x≤$\frac{1}{4}$,则函数f(x)的最大值与最小值之和为8.

查看答案和解析>>

同步练习册答案