精英家教网 > 高中数学 > 题目详情
8.已知a>0且a≠1,函数f(x)=$\frac{5{a}^{x}+3}{{a}^{x}+1}$+4loga$\frac{1+x}{1-x}$,其中-$\frac{1}{4}$≤x≤$\frac{1}{4}$,则函数f(x)的最大值与最小值之和为8.

分析 由函数g(x)是奇函数,得到函数f(x)图象关于(0,4)原点对称,由此得到最值.

解答 解:依题意,f(x)=4+$\frac{{a}^{x}-1}{{a}^{x}+1}$+4loga$\frac{1+x}{1-x}$,
令g(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$+4$lo{g}_{a}\frac{1+x}{1-x}$,
可知g(-x)=-g(x),
故g(x)函数的图象关于原点对称,
故函数f(x)关于(0,4)对称,
故函数f(x)的最大值与最小值之和为8.
故答案为:8

点评 本题考查函数平移,函数的奇偶性,由此得到最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足$\left\{{\begin{array}{l}{x-3y-6≤0}\\{y≤2x+4}\\{2x+3y-12≤0}\end{array}}\right.$,则z=x-y的最小值是(  )
A.-4B.-6C.$-\frac{2}{5}$D.0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知二次函数f(x)二次项系数为a,零点为2a,-a-3,函数g(x)由y=2x向下平移两个单位得到,若f(x),g(x)满足条件“对于?x∈R,f(x),g(x)至少有一个小于0”,则a的取值范围是(-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题“存在x0∈Z,使2x0+x0+1≤0”的否定是(  )
A.存在x0∈Z,使2x0+x0+1<0B.不存在x0∈Z,使2x0+x0+1>0
C.对任意x∈Z,使2x+x+1≤0D.对任意x∈Z,使2x+x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.各项为正数的数列{an}的前n项和为Sn,且满足:Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an+$\frac{1}{4}$(n∈N*
(Ⅰ)求an
(Ⅱ)设数列{$\frac{1}{a_n^2}$}的前n项和为Tn,证明:对一切正整数n,都有Tn<$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在三棱锥D-ABC中,DA⊥平面ABC,AB⊥BC,DA=AB=2,BC=2$\sqrt{2}$,则该三棱锥外接球的体积等于$\frac{32}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)是定义在R上的奇函数且对任意x∈R有f(x)=f(x+4),当x∈(-2,0)时f(x)=2x,则f(2016)-f(2015)的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知球内接圆锥的侧面积为9$\sqrt{10}$π,体积为27π,则该球的体积为(  )
A.$\frac{500π}{3}$B.500πC.100πD.$\frac{125π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.联欢会有歌曲节目4个,舞蹈节目2个,小品节目2个,其中小品节目不能连着演出,舞蹈必须在开头和结尾,有多少种不同的出场顺序(  )
A.480B.960C.720D.180

查看答案和解析>>

同步练习册答案