精英家教网 > 高中数学 > 题目详情
3.各项为正数的数列{an}的前n项和为Sn,且满足:Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an+$\frac{1}{4}$(n∈N*
(Ⅰ)求an
(Ⅱ)设数列{$\frac{1}{a_n^2}$}的前n项和为Tn,证明:对一切正整数n,都有Tn<$\frac{5}{4}$.

分析 (I)分别把n=1和n=n-1代入条件式计算a1和递推公式,得出{an}为等差数列,从而得出通项公式;
(2)$\frac{1}{{{a}_{n}}^{2}}$=$\frac{1}{(2n-1)^{2}}$<$\frac{1}{4n(n-1)}$,再使用列项求和得出结论.

解答 解:(Ⅰ)∵${S_n}=\frac{1}{4}{a_n}^2+\frac{1}{2}{a_n}+\frac{1}{4}$,
当n=1时,${a_1}={S_1}=\frac{1}{4}{a_1}^2+\frac{1}{2}{a_1}+\frac{1}{4}$,解得a1=1.
当n≥2时,${S_{n-1}}=\frac{1}{4}{a_{n-1}}^2+\frac{1}{2}{a_{n-1}}+\frac{1}{4}$;
∴an=Sn-Sn-1=$\frac{1}{4}{{a}_{n}}^{2}$+$\frac{1}{2}$an-$\frac{1}{4}$an-12-$\frac{1}{2}$an-1
整理得:(an+an-1)(an-an-1-2)=0,
又∵数列{an}各项为正数,∴当n≥2时,an-an-1=2,
故数列{an}为首项为1,公差为2的等差数列.
∴an=1+2(n-1)=2n-1.
(Ⅱ)证明:可知Tn=$\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a_3^2}+…+\frac{1}{{a_{n-1}^2}}+\frac{1}{a_n^2}$=$\frac{1}{1^2}+\frac{1}{{3_{\;}^2}}+\frac{1}{{5_{\;}^2}}+…+\frac{1}{{(2n-3)_{\;}^2}}+\frac{1}{{(2n-1)_{\;}^2}}$
∵$\frac{1}{{(2n-1)_{\;}^2}}=\frac{1}{{4n_{\;}^2-4n+1}}<\frac{1}{{4n_{\;}^2-4n}}=\frac{1}{4n(n-1)}=\frac{1}{4}(\frac{1}{n-1}-\frac{1}{n})$,
∴${T_n}=\frac{1}{1^2}+\frac{1}{{3_{\;}^2}}+\frac{1}{{5_{\;}^2}}+…+\frac{1}{{(2n-3)_{\;}^2}}+\frac{1}{{(2n-1)_{\;}^2}}$$<1+\frac{1}{4}(\frac{1}{1}-\frac{1}{2})+\frac{1}{4}(\frac{1}{2}-\frac{1}{3})+…+\frac{1}{4}(\frac{1}{n-2}-\frac{1}{n-1})+\frac{1}{4}(\frac{1}{n-1}-\frac{1}{n})$
=$1+\frac{1}{4}(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n-2}-\frac{1}{n-1}+\frac{1}{n-1}-\frac{1}{n})$
=1+$\frac{1}{4}$-$\frac{1}{4n}$<$\frac{5}{4}$.

点评 本题考查了数列的通项公式求解及数列求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.离散型随机变量X~B(4,0.1),则D(X)=0.4
B.将一组数据中的每个数据都减去同一个数后,平均值与方差均没有变化
C.采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,16,27,38,49的同学均被选出,则该班学生人数可能为60
D.某糖果厂用自动打包机打包,每包的重量X(kg)服从正态分布N(100,1.44),从该糖厂进货10000包,则重量少于96.4kg一般不超过15包

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=x2+ax+b对任意实数x都有f(2+x)=f(2-x),那么必有(  )
A.f(-1)<f(2)<f(4)B.f(2)<f(-1)<f(4)C.f(2)<f(4)<f(-1)D.f(4)<f(2)<f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z=$\frac{2i}{1+i}$,$\overline{z}$为复数z的共轭复数,则|$\overline{z}$|等于(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=log2(x2-2x-3)的定义域为(  )
A.(-∞,-1)∪(3,+∞)B.[-1,3]C.(-∞,-1]∪[3,+∞)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a>0且a≠1,函数f(x)=$\frac{5{a}^{x}+3}{{a}^{x}+1}$+4loga$\frac{1+x}{1-x}$,其中-$\frac{1}{4}$≤x≤$\frac{1}{4}$,则函数f(x)的最大值与最小值之和为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=t+6\\ y=3-\frac{1}{2}t\end{array}\right.$(参数t∈R),曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ+2\end{array}\right.$(参数θ∈[0,2π)).
①化曲线C的方程为普通方程,并指出它表示的是什么曲线;
②若将曲线C上的各点的纵坐标都压缩为原来的一半,得曲线C′.求曲线C′上的动点P到直线l距离的最大值及对应点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若定义运算:a⊕b=$\left\{\begin{array}{l}{a,(a≥b)}\\{b,(a<b)}\end{array}\right.$,例如2⊕3=3,5⊕4=5,则x2⊕(2x-5)=(  )
A.x2B.(2x-5)C.5D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义在R上的函数y=f(x)是减函数,且函数y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2).则当1≤s≤4时,S-2t的最小值为是-4.

查看答案和解析>>

同步练习册答案