精英家教网 > 高中数学 > 题目详情

(本题13分)在几何体ABCDE中,∠BAC= ,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1. 
(1)求证:DC∥平面ABE;
(2)求证:AF⊥平面BCDE;
(3)求几何体ABCDE的体积.

(1)证明:见解析;(2)证明:见解析;(3)2。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

四棱锥的侧面是等边三角形,平面平面是棱的中点.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,直角梯形ABCD中,∠B=90°,AD//BC,AD=1,BC=2,
∠C=60°,将该梯形绕着AB所在的直线为轴旋转一周,求该旋转体的表面积和体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图4,已知平面是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线的中点,已知
(I))求证:⊥平面
(II)求二面角的余弦值.
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题8分)如图,ABCD是正方形,O是正方形的中心, PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE  (2)平面PAC平面BDE

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
如图所示,在正三棱柱ABC -A1B1C1中,底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是A1B1的中点。

(I)求证:A1B1//平面ABD;
(II)求证:AB⊥CE;
(III)求三棱锥C-ABE的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四面体中,两两互相垂直,且

(1)求证:平面平面
(2)求二面角的大小;
(3)若直线与平面所成的角为,求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,是棱的中点.
(Ⅰ)证明:
(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(9分)下图是一几何体的直观图、主视图、俯视图、左视图.
(1)若F为PD的中点,求证:AF⊥面PCD;
(2)证明BD∥面PEC;

查看答案和解析>>

同步练习册答案