精英家教网 > 高中数学 > 题目详情

如图,直三棱柱中,是棱的中点.
(Ⅰ)证明:
(Ⅱ)求二面角的余弦值。

(Ⅰ)证明略
(Ⅱ)二面角的余弦值为

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(10分).一个几何体的三视图如右图所示(单位:),则该几何体的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题13分)在几何体ABCDE中,∠BAC= ,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1. 
(1)求证:DC∥平面ABE;
(2)求证:AF⊥平面BCDE;
(3)求几何体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ADE沿直线DE翻折成△,使平面⊥平面BCDE,F为线段的中点. ks5u
(Ⅰ)求证:EF∥平面
(Ⅱ)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,底面的中点,已知,求:(Ⅰ)三角形的面积;(II)三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 (本小题满分12分)请你设计一个包装盒,如下图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(cm).

(I)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?
(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知矩形周长为20,矩形绕他的一条边旋转形成一个圆柱。问矩形的长、宽各为多少时,旋转形成的圆柱的侧面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P—ABCD的底面为矩形,PA=AD=1,PA⊥面ABCD,E是AB的中点,F为PC上一点,且EF//面PAD。

(I)证明:F为PC的中点;
(II)若二面角C—PD—E的平面角的余弦值为求直线ED与平面PCD所成的角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,求这个多面体最长的一条棱的长.

查看答案和解析>>

同步练习册答案