精英家教网 > 高中数学 > 题目详情

“直线与双曲线有且只有一个公共点”是“直线与双曲线相切”的


  1. A.
    充要条件
  2. B.
    充分不必要条件
  3. C.
    必要不充分条件
  4. D.
    既不充分也不必要条件
C
分析:先判断前者成立是否能推出后者成立;反之后者成立是否能推出前者成立,利用充要条件的定义判断出结论.
解答:当“直线与双曲线有且只有一个公共点”成立时有可能是直线与双曲线的渐近线平行,
此时,“直线与双曲线相切”不成立
反之,“直线与双曲线相切”成立,一定能推出“直线与双曲线有且只有一个公共点”
所以“直线与双曲线有且只有一个公共点”是“直线与双曲线相切”的必要不充分条件
故选C
点评:判断一个条件是另一个条件的什么条件,一般利用充要条件的定义,先判断前者成立是否能推出后者成立;反之判断出后者成立能否推出前者成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在下列四个命题中,
①如果一个命题的逆命题为真命题,那么它的否命题一定是真命题.
②方程
x2
2-k
+
y2
k-1
=1
的图象表示双曲线的充要条件是k<1或k>2.
③过点M(2,4)作与抛物线y2=8x只有一个公共点的直线l有且只有一条.
④圆x2+y2=4上恰有三个点到直线4x-3y+5=0的距离为1.
正确的有
①②④
①②④
.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①已知直线a,b和平面α,若a∥b,b∥α,则a∥α;
②平面上到一个定点和一条定直线的距离相等的点的轨迹是一条抛物线;
③双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),则直线y=
b
a
x+m(m∈R)与双曲线有且只有一个公共点;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直;
⑤过M(2,0)的直线l与椭圆
x2
2
+y2=1交于P1P2两点,线段P1P2中点为P,设直线l斜率为k1(k≠0),直线OP的斜率为k2,则k1k2等于-
1
2

其中,正确命题的序号为
④⑤
④⑤

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列五个命题:
①已知直线a,b和平面α,若ab,bα,则aα;
②平面上到一个定点和一条定直线的距离相等的点的轨迹是一条抛物线;
③双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),则直线y=
b
a
x+m(m∈R)与双曲线有且只有一个公共点;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直;
⑤过M(2,0)的直线l与椭圆
x2
2
+y2=1交于P1P2两点,线段P1P2中点为P,设直线l斜率为k1(k≠0),直线OP的斜率为k2,则k1k2等于-
1
2

其中,正确命题的序号为______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省资阳市高二(下)期末数学试卷(理科)(解析版) 题型:填空题

下列是有关直线与圆锥曲线的命题:
①过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,这样的直线有2条;
②过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线有且只有一个公共点,这样的直线有3条;
④过双曲线的右焦点作直线l交双曲线于A,B两点,若|AB|=4,则满足条件的直线l有3条;
⑤已知双曲线和点A(1,1),过点A能作一条直线l,使它与双曲线交于P,Q两点,且点A恰为线段PQ的中点.
其中说法正确的序号有    .(请写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源:2013年四川省成都市石室中学高考数学三模试卷(文科)(解析版) 题型:填空题

给出下列五个命题:
①已知直线a,b和平面α,若a∥b,b∥α,则a∥α;
②平面上到一个定点和一条定直线的距离相等的点的轨迹是一条抛物线;
③双曲线-=1(a>0,b>0),则直线y=x+m(m∈R)与双曲线有且只有一个公共点;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直;
⑤过M(2,0)的直线l与椭圆+y2=1交于P1P2两点,线段P1P2中点为P,设直线l斜率为k1(k≠0),直线OP的斜率为k2,则k1k2等于-
其中,正确命题的序号为   

查看答案和解析>>

同步练习册答案