精英家教网 > 高中数学 > 题目详情
已知函数的图象与y轴的交点为,它在y轴右侧的第一个最高点和第一个最低点的坐标分别为

(1)求的解析式及的值;
(2)若锐角满足的值.
(1);(2)

试题分析:(1)由图象可得三角函数的最值,周期.再带一个点即可求出的值,从而解得函数的解析式.又根据函数图像可得对应的所对的函数值是最大值,所以可求得的值.本小题的关键是认真阅读图像得到相应的条件.
(2)由(1)得到的函数解析式,可表示出的相应关系式,其中涉及正弦与余弦二倍角的公式,分别求得相应的值即可.
试题解析:(1)由题意得,所以,由.所以.因为,所以.又因为是最小的正数,所以.
(2)因为所以
..
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)请用“五点法”画出函数在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2)求函数的单调递增区间;
(3)当时,求函数的最大值和最小值及相应的的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)=Asin(ωx+φ) 的部分图像如图所示.

(1)求函数y=f(x)的解析式;
(2)当x∈时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=sin xx∈R,g(x)的图象与f(x)的图象关于点对称,则在区间[0,2π]上满足f(x)≤g(x)的x的范围是(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=Acos(ωxφ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ”的(  ).
A.充分不必要条件B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=Asin (ωxφ)(A>0,ω>0,|φ|<)的部分图象如图所示,则ωφ的值分别为(  ).
A.2,0 B.2,C.2,-D.2,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=sin +2cos2x-1(x∈R).
(1)求函数f(x)的最小正周期及单调递增区间;
(2)在△ABC中,三内角ABC的对边分别为abc,已知函数f(x)的图象经过点bac成等差数列,且·=9,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=2sin ωx(ω>0)在区间上单调递增,则ω的最大值等于( ).
A.B.C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题
①在△ABC中,A>B是sinA>sinB的充要条件;
②设m,n是两条直线,α,β是空间中两个平面.若,
③函数f(x)=是周期为2的偶函数;
④已知定点A(1,1),抛物线的焦点为F,点P为抛物线上任意一点,则的最小值为2;
以上命题正确的是________(请把正确命题的序号都写上)

查看答案和解析>>

同步练习册答案