精英家教网 > 高中数学 > 题目详情
(2012•保定一模)已知等比数列{an}的前n项和为Sn,S3=14,S6=126.
(1)求数列{an}的通项公式;
(2)设Tn=
1
a1a2
+
1
a2a3
+
…+
1
anan+1
,试求Tn的表达式.
分析:(1)根据S3=14,S6=126.可求出a4+a5+a6=112,再利用等比数列各项之间的关系,求出公比q,把S3=a1+a2+a3=14中的每一项用a1和q表示,求出a1,代入等比数列的通项公式即可
(2)由(1)知,
1
anan+1
=
1
2n2n+1
=
1
22n+1
1
anan+1
1
an-1an
=
1
4
,得出数列{
1
anan+1
}是以
1
8
为首项,
1
4
为公比的等比数列.利用公式求解即可.
解答:解:(1)∵S3=a1+a2+a3=14,S6=a1+a2+…+a6=126
∴a4+a5+a6=112,∵数列{an}是等比数列,
∴a4+a5+a6=(a1+a2+a3)q3=112
∴q3=8∴q=2
由a1+2a1+4a1=14得,a1=2,
∴an=a1qn-1=2n
(2)由(1)知,
1
anan+1
=
1
2n2n+1
=
1
22n+1
1
anan+1
1
an-1an
=
1
4

又a1=2,a2=4,所以数列{
1
anan+1
}是以
1
8
为首项,
1
4
为公比的等比数列.
∴Tn=
1
8
(1-
1
4n
)
1-
1
4
=
1
6
(1-
1
4n
)
点评:本题考查等比数列的判定,通项公式、前n项和的计算,考查方程思想,转化、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•保定一模)已知a>0,b>0且a≠1,则“logab>0”是“(a-1)(b-1)>0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•保定一模)已知实数m是2,8的等比中项,则圆锥曲线x2+
y2
m
=1的离心率为
3
2
5
3
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•保定一模)已知角α的终边上一点的坐标为(sin
π
6
,cos
π
6
)
,则角α的最小正值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•保定一模)下列四个函数中,以π为最小周期,且在区间(
π
2
,π
)上为减函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•保定一模)下列所给的4个图象为我离开家的距离y与所用时间t 的函数关系

给出下列3个事件:
(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;
(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;
(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.
其中事件(1)(2)(3)与所给图象吻合最好是(  )

查看答案和解析>>

同步练习册答案