精英家教网 > 高中数学 > 题目详情

已知a>0,a≠1,设p:函数内单调递减,q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p与q有且只有一个正确,求a的取值范围

,1,+

解析试题分析:当0<a<1时,函数在(0,+)内单调递减.
当a>1时,在(0,+)内不是单调递减函数.
∴0<a<1                                          
曲线y=x2+(2a-3)x+1与x轴交于不同的两点等价于(2a-3)2-4>0,即.                         
若p真q假,则(0,1){,11,]}=,1.
若p假q真,注意到已知a>0,a≠1,所以有
(1,+){(0,,+=(,+)  
综上可知,,1,+).
考点:对数的概念 命题的判断
点评:本题考查了对数函数的单调性、二次函数根的判定及否命题的知识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(1)若在其定义域内为单调递增函数,求实数的取值范围;
(2)设,且,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中是常数,且
(1)求函数的极值;
(2)证明:对任意正数,存在正数,使不等式成立;
(3)设,且,证明:对任意正数都有:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,曲线在点处的切线方程为
(1)确定的值
(2)若过点(0,2)可做曲线的三条不同切线,求的取值范围
(3)设曲线在点处的切线都过点(0,2),证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-2alnx(a>0)
(I)求函数f(x)的单调区间和最小值.
(II)若方程f(x)=2ax有唯一解,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(Ⅰ)求实数的值;
(Ⅱ)判断函数的单调性;
(Ⅲ)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中,区间
(Ⅰ)求的长度(注:区间的长度定义为);
(Ⅱ)给定常数,当时,求长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若且对任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.(的图象连续不断)
(1) 求的单调区间;
(2) 当时,证明:存在,使
(3) 若存在属于区间,且,使,证明:

查看答案和解析>>

同步练习册答案