精英家教网 > 高中数学 > 题目详情

已知函数f(x)=-2alnx(a>0)
(I)求函数f(x)的单调区间和最小值.
(II)若方程f(x)=2ax有唯一解,求实数a的值.

(I)函数的减区间为,增区间为,最小值为
(II)

解析试题分析:解:⑴函数的定义域为,且
所以当时,,当时,
即函数的减区间为,增区间为
.
⑵设

因为,令,则
所以当,当
即函数的减区间为,增区间为
又因为当时均有
所以有唯一解
注意到,所以 
所以,因为,所以
,则对于恒成立,
为增函数,又,所以
解之得,为所求.
考点:函数的零点与方程根的关系;利用导数研究函数的单调性.
点评:本小题主要考查函数的单调性、导数的应用、解不等式等基础知识,以及推理能力、运算能力和综合应用数学知识的能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)计算的值,据此提出一个猜想,并予以证明;
(2)证明:除点(2,2)外,函数的图像均在直线的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在原点处的切线方程;
(Ⅱ)当时,讨论函数在区间上的单调性;
(Ⅲ)证明不等式对任意成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)请写出函数在每段区间上的解析式,并在图中的直角坐标系中作出函数的图象;
(II)若不等式对任意的实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义域为的奇函数,且当时,
,(
(1)求实数的值;并求函数在定义域上的解析式;
(2)求证:函数上是增函数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,a≠1,设p:函数内单调递减,q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p与q有且只有一个正确,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)若a=0时,求函数在点(1,)处的切线方程;
(2)若函数在[1,2]上是减函数,求实数a的取值范围;
(3)令是否存在实数a,当是自然对数的底)时,函数 的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是奇函数,且当时,,求时,的表达式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数表示导函数。
(1)求函数的单调递增区间;
(2)当为奇数时,设,数列的前项和为,证明不等式对一切正整数均成立,并比较的大小.

查看答案和解析>>

同步练习册答案