精英家教网 > 高中数学 > 题目详情

【题目】在三角形ABC中,角A、B、C的对边分别为a,b,c,a=4bcosC,
(1)求角B 的值;
(2)若 ,求三角形ABC 的面积.

【答案】
(1)解:∵

由正弦定理:

得:

则sinA=4sinBcosC

而sinA=sin[π﹣(B+C)]=sin(B+C)=4sinBcosC

则cosBsinC=3sinBcosC

即:

由已知cosC>0,

那么

则tanB=1,

∵0<B<π,

∴B=


(2)解:由正弦定理

则△ABC的面积


【解析】(1)利用正弦定理以及三角内角和定理即可求解出角B 的值;(2)利用正弦定理求出c,根据sinA=sin(B+C)求解sinA的值,即可求三角形ABC 的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)若f(x)在区间(1,2)上单调递增,求a的取值范围;
(Ⅲ)讨论函数g(x)=f'(x)﹣x的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 ,x∈R,记函数
(1)求函数f(x)的单调递增区间;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某四棱锥的三视图如图所示,俯视图是一个等腰直角三角形,则该四棱锥的表面积是(
A.2 +2 +2
B.3 +2 +3
C.2 + +2
D.3 + +3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与抛物线C的交点为Q,且|QF|=2|PQ|,过F的直线l与抛物线C相交于A,B两点.
(1)求C的方程;
(2)设AB的垂直平分线l'与C相交于M,N两点,试判断A,M,B,N四点是否在同一个圆上?若在,求出l的方程;若不在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}满足:bn=an+1﹣an(n∈N*).
(1)若a1=1,bn=n,求数列{an}的通项公式;
(2)若bn+1bn1=bn(n≥2),且b1=1,b2=2. (i)记cn=a6n1(n≥1),求证:数列{cn}为等差数列;
(ii)若数列{ }中任意一项的值均未在该数列中重复出现无数次,求首项a1应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)(
A.2017年
B.2018年
C.2019年
D.2020年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的图象上有且仅有四个不同的点关于直线y=﹣1的对称点在y=kx﹣1的图象上,则实数k的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)满足2x2f(x)+x3f'(x)=ex , f(2)= ,则x∈[2,+∞)时,f(x)的最小值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案