精英家教网 > 高中数学 > 题目详情

【题目】某公司一年需购买某种原料600吨,设公司每次都购买每次运费为3万元,一年的总存储费为万元一年的总运费与总存储费之和为(单位:万元)

1)试用解析式得表示成的函数

2)当为何值时 取得最小值并求出的最小值

【答案】(1) (2)当吨时 取得最小值 的最小值是120万元.

【解析】试题分析:根据条件关系,即可求出关于的函数解析式

利用基本不等式的性质即可求出的最小值

解析:(1)解:该公司一年需购买某种原料600吨,每次都购买则一共需要购买

因为每次运费为3万元,所以一年的总运费是(万元);

又因为一年的总存储费为万元

所以一年的总运费与总存储费之和

这就是所求的关于的函数解析式

2)解:因为所以

当且仅当等号成立

所以当吨时 取得最小值 的最小值是120万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的值域;

(2)如果对任意的不等式恒成立,求实数的取值范围;

(3)是否存在实数使得函数的最大值为0,若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC=AA1=4,AB=3,AB⊥AC.

(Ⅰ)求证:A1C⊥平面ABC1
(Ⅱ)求二面角A﹣BC1﹣A1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且 =λ(0<λ<1).

(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)当λ为何值时,平面BEF⊥平面ACD?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱 中, 分别是 的中点,
(Ⅰ)证明: ∥平面
(Ⅱ)求锐二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点的椭圆 的长轴的一个端点是抛物线 的焦点,且椭圆 的离心率是 .
(1)求椭圆 的方程;
(2)过点 的动直线与椭圆 相交于 两点.若线段 的中点的横坐标是 ,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,椭圆 过点 ,直线 轴于 ,且 为坐标原点.
(1)求椭圆 的方程;
(2)设 是椭圆 的上顶点,过点 分别作直线 交椭圆 两点,设这两条直线的斜率分别为 ,且 ,证明:直线 过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利民中学为了了解该校高一年级学生的数学成绩,从高一年级期中考试成绩中抽出100名学生的成绩,由成绩得到如下的频率分布直方图.

根据以上频率分布直方图,回答下列问题:

(1)求这100名学生成绩的及格率;(大于等于60分为及格)

(2)试比较这100名学生的平均成绩和中位数的大小.(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线3x﹣y=0上且在第一象限,圆C与x相切,且被直线x﹣y=0截得的弦长为2
(1)求圆C的方程;
(2)若P(x,y)是圆C上的点,满足 x+y﹣m≤0恒成立,求m的范围.

查看答案和解析>>

同步练习册答案