精英家教网 > 高中数学 > 题目详情

设数列{}满足:a1=2,对一切正整数n,都有
(1)探讨数列{}是否为等比数列,并说明理由;
(2)设

(1)是,理由见解析;(2)证明过程详见解析.

解析试题分析:本题主要考查等比数列的定义、等比数列的证明、数学归纳法、放缩法等数学知识,考查学生的分析问题解决问题的能力、转化能力和计算能力.第一问,通过对已知表达式的移项,变形可得出数列的通项,可以用等比数列的定义证明也可以用数学归纳法证明;第二问,将第一问的结论代入,得到表达式,法一:利用放缩法和裂项相消法证明,法二:利用数列的累加法和放缩法证明.
试题解析:⑴由
∴对一切,可知是首项为,公比为的等比数列. 5分
(通过归纳猜想,使用数学归纳法证明的,亦应给分)
(2)由(1)知                      6分
证一:
                              10分
12分
证二:∵ ≥(仅当时等号成立),故此,10分
从而, 12分
考点:1.数学归纳法;2.累加法;3.放缩法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知非零向量a,b,且a⊥b,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,已知().
(1)当时,分别求的值,判断是否为定值,并给出证明;
(2)求出所有的正整数,使得为完全平方数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列计算由此推测出的计算公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某同学在一次研究性学习中发现以下四个不等式都是正确的:




请你观察这四个不等式:
(1)猜想出一个一般性的结论(用字母表示);
(2)证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.
(1)求数列{bn}的通项公式bn
(2)设数列{an}的通项an=loga(其中a>0且a≠1).记Sn是数列{an}的前n项和,试比较Snlogabn+1的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{an}中,a1=1,an+1n∈N,求a2a3a4
并猜想数列的通项公式,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求证:

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

“无理数是无限小数,而是无限小数,所以是无理数。”
这个推理是          _推理(在“归纳”、“类比”、“演绎”中选择填空)

查看答案和解析>>

同步练习册答案