精英家教网 > 高中数学 > 题目详情
9.已知物体的运动方程是s=$\frac{1}{3}$t3-4t2+12t(t表示时间,s表示位移),则瞬时速度为0的时刻是(  )
A.0秒、2秒或6秒B.2秒或16秒C.2秒、8秒或16秒D.2秒或6秒

分析 求出函数的导数,通过导数为0,即可得到结果.

解答 解:物体的运动方程是s=$\frac{1}{3}$t3-4t2+12t,
可得s′=t2-8t+12,令s′=t2-8t+12=0,解得t=2或6.
则瞬时速度为0的时刻是2秒或6秒.
故选:D.

点评 本题考查导数的概念,瞬时速度的含义,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=1,an+1=$\frac{{a}_{n}^{2}}{{2a}_{n}+1}$(n∈N+
(1)求a2,a3的值;
(2)求数列{an}的通项公式;
(3)求证:$\sum_{i=1}^{n}$$\frac{{a}_{i}}{1{+a}_{i}}$<$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)=ax2+bx+c经过点(-1,0),(3,0),(0,-3).
(1)求f(x)的解析式;
(2)当x∈[t,t+1]时,求f(x)的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一次课程改革交流会上准备交流试点校的5篇论文和非试点校的3篇论文,排列次序可以是任意的,则最先和最后交流的论文不能来自同类校的概率是$\frac{15}{28}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知tanθ=$\frac{3}{4}$,θ为第三象限角,求$cos(θ-\frac{π}{4})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.两同心圆x2+y2=25和x2+y2=16,从外圆上一点作内圆的两条切线,两条切线的夹角为(  )
A.arctan$\frac{4}{3}$B.2arctan$\frac{4}{3}$C.π-arctan$\frac{4}{3}$D.π-2arctan$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)的定义域为(0,+∞),若y=$\frac{f(x)}{x}$在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=$\frac{f(x)}{{x}^{2}}$在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为Ω1,所有“二阶比增函数”组成的集合记为Ω2,.
(Ⅰ)已知函数f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求实数h的取值范围;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函数值由下表给出,
xabca+b+c
f(x)ddt4
求证:d(2d+t-4)>0;
(Ⅲ)定义集合Ψ={f(x)|f(x)∈Ω2},且存在常数k,使得任取x∈(0,+∞),f(x)<k},请问:是否存在常数m,使得?f(x)∈Ψ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某学校举办消防知识竞赛,总共7个题中,分值为10分的有A1,A2,A3,A4共4个,分值为20分的有B1,B2,B3 共3个,每位选手都要分别从4个10分题和3个20分题中各随机抽取1题参赛.已知甲选手4个10分题中只有 A2 不会,3个20分题中只会B2
(Ⅰ)求甲选手恰好得30分的概率;   
(Ⅱ)求甲选手得分超过10分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出四个结论:(1)若a>b>0,且m>0,则$\frac{b}{a}$<$\frac{b+m}{a+m}$;(2)若a,b∈R,则$\frac{{a}^{2}+{b}^{2}}{2}$≥($\frac{a+b}{2}$)2;(3)若a,b∈R,则a2-2ab+2b2<2b-2;(4)若a>0,b>0,则aabb≥abba,其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案