精英家教网 > 高中数学 > 题目详情
1.在△ABC内,内角A,B,C所对的边分别为a,b,c,若a=2,c=1,则角C的取值范围是(  )
A.(0,$\frac{π}{6}$]B.(0,$\frac{π}{3}$)C.(0,$\frac{π}{2}$)D.($\frac{π}{6}$,$\frac{π}{2}$)

分析 c=1<2=a,可知:C为锐角.由正弦定理可得:$\frac{2}{sinA}$=$\frac{1}{sinC}$,于是0<sinC=$\frac{1}{2}$sinA≤$\frac{1}{2}$,利用三角函数的单调性即可得出.

解答 解:∵c=1<2=a,∴C为锐角.
由正弦定理可得:$\frac{2}{sinA}$=$\frac{1}{sinC}$,
∴0<sinC=$\frac{1}{2}$sinA≤$\frac{1}{2}$,
∴$0<C≤\frac{π}{6}$,
∴角C的取值范围是$(0,\frac{π}{6}]$.
故选:A.

点评 本题考查了正弦定理、三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=x2+bx+c的图象的顶点在第四象限.则函数f′(x)的图象是下列四幅中的Ⅳ(只填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.化简:
(Ⅰ)sin50°(1+$\sqrt{3}$tan10°)
(Ⅱ)tan20°+tan40°+$\sqrt{3}tan{20°}tan{40°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果实数x,y满足:$\left\{\begin{array}{l}2x-y≥0\\ x+y-4≥0\\ x≤3\end{array}$,则$\frac{y}{x}$的取值范围是[$\frac{1}{3}$,2],z=$\frac{y}{x}$+$\frac{x}{y}$的最大值为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若方程$\frac{2}{x}$+ln$\frac{1}{x-1}$=0的解为x0,则x0所在的大致区间是(  )
A.(1,2)B.(2,3)C.(3,4)D.(5,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.半径长为2的扇形AOB中,圆心角为$\frac{2π}{3}$,按照下面两个图形从扇形中切割一个矩形PQRS,设∠POA=θ.
(1)请用角θ分别表示矩形PQRS的面积;
(2)按图形所示的两种方式切割矩形PQRS,问何时矩形面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.f(x)=x-1+$\frac{1}{{e}^{x}}$的图象与直线l:y=kx-1没有公共点,则实数k的范围为(  )
A.(0,1]B.[-1,1]C.(1-e,1]D.(1-e,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间($\frac{1}{2}$,1)内恒有f(x)<0,则f(x)的单调递增区间是(  )
A.(-∞,-$\frac{1}{4}$)B.(-$\frac{1}{4}$,+∞)C.(-∞,-$\frac{1}{2}$)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\frac{1}{3}$x3-x2+5在x=1处的切线倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

同步练习册答案