精英家教网 > 高中数学 > 题目详情
(2012•江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为
9
9
分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.
解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),
∴f(x)=x2+ax+b=0只有一个根,即△=a2-4b=0则b=
a2
4

不等式f(x)<c的解集为(m,m+6),
即为x2+ax+
a2
4
<c解集为(m,m+6),
则x2+ax+
a2
4
-c=0的两个根为m,m+6
∴|m+6-m|=
a2-4(
a2
4
-c)
=6
解得c=9
故答案为:9
点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏一模)已知椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,过椭圆的右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线与x轴交于点M,若△PQM为正三角形,则椭圆的离心率等于
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)已知集合A={1,2,4},B={2,4,6},则 A∪B=
{1,2,4,6}
{1,2,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)已知各项均为正数的两个数列{an}和{bn}满足:an+1=
an+bn
an2+bn2
,n∈N*
(1)设bn+1=1+
bn
an
,n∈N*,,求证:数列{(
bn
an
) 2}
是等差数列;
(2)设bn+1=
2
bn
an
,n∈N*,且{an}是等比数列,求a1和b1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)已知正数a,b,c满足:5c-3a≤b≤4c-a,clnb≥a+clnc,则
ba
的取值范围是
[e,7]
[e,7]

查看答案和解析>>

同步练习册答案