精英家教网 > 高中数学 > 题目详情
17.若三点A(2,3),B(5,0),C(0,b)(b≠0)共线,则b=(  )
A.2B.3C.5D.1

分析 三点A(2,3),B(5,0),C(0,b)(b≠0)共线,可得kAB=kBC,利用斜率计算公式即可得出.

解答 解:∵三点A(2,3),B(5,0),C(0,b)(b≠0)共线,
∴kAB=kBC,∴$\frac{3-0}{2-5}$=$\frac{0-b}{5-0}$,解得b=5.
故选:C.

点评 本题考查了斜率计算公式、三点共线与斜率的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知直线y=kx+2与椭圆$\frac{x^2}{4}+{y^2}=1$相交于A,B两点,O为坐标原点,若∠AOB=90°.求该直线的方程.(写成斜截式)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$y=\frac{1}{|2x|-1}$,求:
(1)函数的定义域,奇偶性并作出大致图象;
(2)写出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列变形错误的是(  )
A.cos4θ-sin4θ=cos2θ
B.$\frac{1}{1-tanθ}-\frac{1}{1+tanθ}=tan2θ$
C.$\frac{1-2sinαcosα}{{{{cos}^2}α-{{sin}^2}α}}=\frac{1-tanα}{1+tanα}$
D.$sinα•cosβ=\frac{1}{2}[sin(α+β)-sin(α-β)]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a>0,函数f(x)=ax3-3x,g(x)=-$\frac{3}{2}$(a+2)x2+9x-3
(1)若a=1,求曲线y=f(x)在点x=2处的切线方程;
(2)若h(x)=f(x)+g(x),求函数h(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆的两焦点为F1(0,-2)、F2(0,2),离心率为$\frac{1}{2}$
(1)求椭圆的标准方程;
(2)设点P在椭圆上,且|PF1|•|PF2|=16,求∠F1PF2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤1\\-x,x>1\end{array}\right.$,若f(x)=2,则x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知cotα=-2,求tanα,sinα,cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow a=(2,-1,2)$,$\overrightarrow b=(-4,2,x)$且$\overrightarrow a⊥\overrightarrow b$,则x的值为5.

查看答案和解析>>

同步练习册答案