分析 由已知及等比数列的性质可得sin2B=sinAsinC,由正弦定理可得b2=ac,进而可求c=2a,b=$\sqrt{2}$a,由余弦定理可求cosB,利用同角三角函数基本关系式可得sinB的值,利用平面向量数量积的运算可求ac的值,利用三角形面积公式即可计算得解.
解答 解:∵sinA,sinB,sinC依次成等比数列,
∴sin2B=sinAsinC,由正弦定理可得:b2=ac,
∵c=2a,可得:b=$\sqrt{2}$a,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+4{a}^{2}-2{a}^{2}}{2a×2a}$=$\frac{3}{4}$,可得:sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{7}}{4}$,
∵$\overrightarrow{BA}$•$\overrightarrow{BC}$=24,可得:accosB=$\frac{3}{4}$ac=24,解得:ac=32,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×32×\frac{\sqrt{7}}{4}$=4$\sqrt{7}$.
故答案为:4$\sqrt{7}$.
点评 本题主要考查了等比数列的性质,正弦定理,余弦定理,同角三角函数基本关系式,平面向量数量积的运算,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | “x=1”是“x2-3x+2=0”的充分不必要条件 | |
| B. | 命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0” | |
| C. | 对于命题p:?x>0,使得x2+x+1<0,则¬p:?x≤0,均有x2+x+1≥0 | |
| D. | 若p∨q为假命题,则p、q均为假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\sqrt{{x}^{2}}$ | B. | y=lg10x | C. | y=($\sqrt{x}$)2 | D. | y=10lgx |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | -$\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | -$\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com