精英家教网 > 高中数学 > 题目详情
14.若A={x|-3≤x≤4},B={x|2m-1≤m+1},B⊆A,求实数m的取值范围.

分析 本题的关键是根据集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A,理清集合A、B的关系,求实数m的取值范围

解答 解:集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A
①B=∅时,2m-1≥m+1,故m≥2
②B≠∅时,m<2,且$\left\{\begin{array}{l}{2m-1≥-3}\\{m+1≤4}\end{array}\right.$
故-1≤m<2.
综上,实数m的取值范围:m≥-1.

点评 本题主要考查集合的相等等基本运算,属于基础题.要正确判断两个集合间相等的关系,必须对集合的相关概念有深刻的理解,善于抓住代表元素,认清集合的特征.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{2}$,长轴A1A2,短轴B1B2,四边形A1B1A2B2的面积为$4\sqrt{3}$.
(I)求椭圆的标准方程.
(Ⅱ)过椭圆的右焦点F的直线l交椭圆于P、Q,直线A1P与A2Q交于M,A1Q与A2P交于N.
(i)证明:MN⊥x轴,并求直线MN的方程.
(ii)证明:以MN为直径的圆过右焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{{\begin{array}{l}{a{x^2}+2,x≥0}\\{(a-2)•{2^x},x<0}\end{array}}$是R上的单调函数,则实数a的取值范围是(  )
A.(2,+∞)B.(2,4]C.(-∞,4]D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ln(ax-1)的导函数是f'(x),且f'(2)=2,则实数a的值为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四组函数中,相等的两个函数是(  )
A.f(x)=x,$g(x)=\frac{x^2}{x}$B.$f(x)=\sqrt{x^2}$,$g(x)=\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$
C.$f(x)={(\sqrt{x})^2}$,g(x)=xD.$f(x)=\sqrt{x^2}$,$g(x)=\root{3}{x^3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图所示,正方体的棱长为1,B'C∩BC'=O,则AO与A'C'所成角的度数为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,角A,B,C的对边分别为a,b,c,sinA,sinB,sinC依次成等比数列,c=2a且$\overrightarrow{BA}$•$\overrightarrow{BC}$=24,则△ABC的面积是4$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知锐角θ满足sin($\frac{θ}{2}$+$\frac{π}{6}$)=$\frac{2}{3}$,则cos(θ+$\frac{5π}{6}$)的值为(  )
A.-$\frac{1}{9}$B.$\frac{4\sqrt{5}}{9}$C.-$\frac{4\sqrt{5}}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),则∠ABC=(  )
A.1200B.600C.450D.300

查看答案和解析>>

同步练习册答案