| A. | f(x)=x,$g(x)=\frac{x^2}{x}$ | B. | $f(x)=\sqrt{x^2}$,$g(x)=\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$ | ||
| C. | $f(x)={(\sqrt{x})^2}$,g(x)=x | D. | $f(x)=\sqrt{x^2}$,$g(x)=\root{3}{x^3}$ |
分析 根据两个函数的定义域相同,对应关系也相同,即可判断它们是相等函数.
解答 解:对于A,f(x)=x(x∈R),与g(x)=$\frac{{x}^{2}}{x}$=x(x≠0)的定义域不相同,不是相等函数;
对于B,f(x)=$\sqrt{{x}^{2}}$=|x|=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,与g(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$的定义域相同,对应关系也相同,是相等函数;
对于C,f(x)=${(\sqrt{x})}^{2}$=x(x≥0),与g(x)=x(x∈R)的定义域不相同,不是相等函数;
对于D,f(x)=$\sqrt{{x}^{2}}$=|x|(x∈R),与g(x)=$\root{3}{{x}^{3}}$=x(x∈R)的对应关系不相同,不是相等函数.
故选:B.
点评 本题考查了判断两个函数是否为相等函数的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 用水量t(单位:吨) | 每吨收费标准(单位:元) |
| 不超过2吨部分 | m |
| 超过2吨不超过4吨部分 | 3 |
| 超过4吨部分 | n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “x=1”是“x2-3x+2=0”的充分不必要条件 | |
| B. | 命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0” | |
| C. | 对于命题p:?x>0,使得x2+x+1<0,则¬p:?x≤0,均有x2+x+1≥0 | |
| D. | 若p∨q为假命题,则p、q均为假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com