精英家教网 > 高中数学 > 题目详情
9.下列四组函数中,相等的两个函数是(  )
A.f(x)=x,$g(x)=\frac{x^2}{x}$B.$f(x)=\sqrt{x^2}$,$g(x)=\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$
C.$f(x)={(\sqrt{x})^2}$,g(x)=xD.$f(x)=\sqrt{x^2}$,$g(x)=\root{3}{x^3}$

分析 根据两个函数的定义域相同,对应关系也相同,即可判断它们是相等函数.

解答 解:对于A,f(x)=x(x∈R),与g(x)=$\frac{{x}^{2}}{x}$=x(x≠0)的定义域不相同,不是相等函数;
对于B,f(x)=$\sqrt{{x}^{2}}$=|x|=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,与g(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$的定义域相同,对应关系也相同,是相等函数;
对于C,f(x)=${(\sqrt{x})}^{2}$=x(x≥0),与g(x)=x(x∈R)的定义域不相同,不是相等函数;
对于D,f(x)=$\sqrt{{x}^{2}}$=|x|(x∈R),与g(x)=$\root{3}{{x}^{3}}$=x(x∈R)的对应关系不相同,不是相等函数.
故选:B.

点评 本题考查了判断两个函数是否为相等函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某校高一(1)班的课外生物研究小组通过互联网上获知,某种珍稀植物的种子在一定条件下发芽成功率为$\frac{1}{3}$,小组依据网上介绍的方法分小组进行验证性实验(每次实验相互独立).
(1)第一小组共做了5次种子发芽实验(每次均种下一粒种子),求5次实验至少有3次成功的概率;
(2)第二小组在老师的带领下做了若干次实验(每次均种下一粒种子),如果在一次实验中,种子发芽成功则停止实验;否则将继续进行下去,直到种子发芽成功为止,而该小组能供实验的种子只有n颗(n≥5,n∈N*).求第二小组所做的实验次数ξ的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某市居民生活用水标准如表:
用水量t(单位:吨)每吨收费标准(单位:元)
不超过2吨部分m
超过2吨不超过4吨部分3
超过4吨部分n
已知某用户1月份用水量为3.5吨,缴纳水费为7.5元;2月份用水量为6吨,缴纳水费为21元.设用户每月缴纳的水费为y元.
(1)写出y关于t的函数关系式;
(2)某用户希望4月份缴纳的水费不超过18元,求该用户最多可以用多少吨水?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以下有关命题的说法错误的是(  )
A.“x=1”是“x2-3x+2=0”的充分不必要条件
B.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
C.对于命题p:?x>0,使得x2+x+1<0,则¬p:?x≤0,均有x2+x+1≥0
D.若p∨q为假命题,则p、q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设集合A={x|(x-2m+1)(x-m+2)<0},B={x|1≤x+1≤4}.
(1)若m=1,求A∩B;
(2)若A∩B=A,求实数m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若A={x|-3≤x≤4},B={x|2m-1≤m+1},B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在复平面内,复数(-4+5i)i(i为虚数单位)的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x-1)=2x2-8x+11,则函数f(x)的解析式为f(x)=2x2-4x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是矩形,BC=PC,E是PA的中点.
(1)求证:PB⊥平面CDE;
(2)已知点M是AD的中点,点N是AC上一点,且平面PDN∥平面BEM.若BC=2AB=4,求点N到平面CDE的距离.

查看答案和解析>>

同步练习册答案