精英家教网 > 高中数学 > 题目详情
20.某市居民生活用水标准如表:
用水量t(单位:吨)每吨收费标准(单位:元)
不超过2吨部分m
超过2吨不超过4吨部分3
超过4吨部分n
已知某用户1月份用水量为3.5吨,缴纳水费为7.5元;2月份用水量为6吨,缴纳水费为21元.设用户每月缴纳的水费为y元.
(1)写出y关于t的函数关系式;
(2)某用户希望4月份缴纳的水费不超过18元,求该用户最多可以用多少吨水?

分析 (1)由题意,当t=3.5时,y=7.5;当t=6时,y=21,从而求出m,n;再由分段函数写出表达式;
(2)分析分段函数在各段上的取值范围,从而得到6t-15≤18,从而求用水量.

解答 解:(1)由已知y=$\left\{\begin{array}{l}{mt,0≤t≤2}\\{3t-3,2<t≤4}\\{nt-15,t>4}\end{array}\right.$
当t=3.5时,y=7.5;当t=6时,y=21.
代入得:$\left\{{\begin{array}{l}{2m+4.5=7.5}\\{2m+6+2n=21}\end{array}}\right.$解得:m=1.5,n=6    
∴y关于t的函数关系式为:$y=\left\{{\begin{array}{l}{1.5t,0≤t≤2}\\{3t-3,2<t≤4}\\{6t-15.t>4}\end{array}}\right.$
(2)令6t-15≤18,解得t≤5.5
∴该用户最多用水量为5.5吨.

点评 本题考查了分段函数的应用,同时考查了将实际问题转化为数学问题的能力,属于中档题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知F1、F2分别是椭圆C:$\frac{{x}^{2}}{4}$+y2=1的左、右焦点.
(1)若P是第一象限内该椭圆上的一点,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=-$\frac{5}{4}$,求点P的坐标;
(2)若直线l与圆O:x2+y2=$\frac{1}{4}$相切,交椭圆C于A,B两点,是否存在这样的直线l,使得OA⊥OB?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=(2x+a)n,其中$n=6\int_0^{\frac{π}{2}}{cosxdx,\frac{f'(0)}{f(0)}}=-12$,则f(x)的展开式中x4的系数为240.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列命题:
①直线l平行于平面α内的无数条直线,则l∥α;
②若直线a不在平面α内,则a∥α;
③若直线a∥b,直线b?α,则a?α;
④若直线a∥b,b?α,那么直线a就平行于平面α内的无数条直线;
⑤若直线a∥b,b∥α,则a∥α;
⑥过直线外一点,可以作无数个平面与这条直线平行;
⑦过平面外一点有无数条直线与这个平面平行;
⑧若一条直线与平面平行,则它与平面内的任何直线都平行.
其中正确的命题是③⑥⑦.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(1)求函数f(x)在点(0,f(0)处的切线方程;   
(2)求函数f(x)单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{{\begin{array}{l}{a{x^2}+2,x≥0}\\{(a-2)•{2^x},x<0}\end{array}}$是R上的单调函数,则实数a的取值范围是(  )
A.(2,+∞)B.(2,4]C.(-∞,4]D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.等差数列{an}的首项为23,公差为-2,则数列前n项和的最大值为144.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四组函数中,相等的两个函数是(  )
A.f(x)=x,$g(x)=\frac{x^2}{x}$B.$f(x)=\sqrt{x^2}$,$g(x)=\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$
C.$f(x)={(\sqrt{x})^2}$,g(x)=xD.$f(x)=\sqrt{x^2}$,$g(x)=\root{3}{x^3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四边形ABCD是平行四边形,AE⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=$\sqrt{6}$,DE=3,∠BAD=60°,G为BC的中点.
(1)求证:FG∥平面BED;
(2)求证:平面BED⊥平面AED;
(3)求多面体EF-ABCD的体积.

查看答案和解析>>

同步练习册答案