精英家教网 > 高中数学 > 题目详情

P为抛物线y2=4x上一动点,则点P到y轴距离和到点A(2,3)距离之和的最小值等于________.


分析:先求出抛物线的准线方程,焦点坐标,由于A在抛物线的外部,所以连接焦点F和点A,AF与抛物线的交点P,即为所求点,利用抛物线的定义可求点P到y轴距离和到点A(2,3)距离之和的最小值.
解答:解:y2=4x的准线是x=-1.抛物线的焦点坐标为(1,0)
由于A在抛物线的外部,所以连接焦点F和点A,AF与抛物线的交点P,即为所求点,
∵P到x=-1的距离等于P到焦点F的距离,
∴点P到y轴距离和到点A(2,3)距离之和为P到焦点F的距离
和到点A(2,3)距离之和减1,
∴当且仅当A,P,F三点共线时,点P到y轴距离和到点A(2,3)距离之和最小
∴点P到y轴距离和到点A(2,3)距离之和的最小值为|AF|-1=
故答案为:
点评:本题以抛物线的标准方程为载体,考查抛物线的定义,考查距离和,解题的关键是利用抛物线上的点到焦点的距离等于它到准线的距离.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x上的动点,过P分别作y轴与直线x-y+4=0的垂线,垂足分别为A,B,则PA+PB的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为抛物线y2=4x上任一点,则其到抛物线焦点与到Q(2,3)的距离之和最小值是
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x上的任意一点,记点P到直线x=-1的距离为d,对于给定点A(4,5),则|PA|+d的最小值为
34
34

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是
17
-1
17
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

P为抛物线y2=4x上任意一点,P在y轴上的射影为Q,点M(4,5),则PQ与PM长度之和的最小值为:
34
-1
34
-1

查看答案和解析>>

同步练习册答案