精英家教网 > 高中数学 > 题目详情
2.已知($\frac{1}{2}$)a<($\frac{1}{2}$)b<1,则下列不等式成立的是(  )
A.(a-1)2>(b-1)2B.lna>lnbC.a+b>1D.$\sqrt{a}$<$\sqrt{b}$

分析 根据函数y=${(\frac{1}{2})}^{x}$的图象与性质得出a>b>0,从而判断B正确,其他选项错误.

解答 解:根据函数y=${(\frac{1}{2})}^{x}$的图象与性质知,
当($\frac{1}{2}$)a<($\frac{1}{2}$)b<1时,a>b>0;
∴lna>lnb,B正确;
又a-1>b-1>-1,∴(a-1)2>(b-1)2不一定成立,A错误;
a+b>1不一定成立,∴B错误;
$\sqrt{a}$>$\sqrt{b}$,∴D错误.
故选:B.

点评 本题考查了指数、对数函数的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.集合A={x|2x2-3x≤0,x∈Z},B={x|1≤2x<32,x∈Z},集合C满足A⊆C?B,则C的个数为(  )
A.3B.4C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{4}$.
(1)求f(x)的表达式;
(2)将函数f(x)的图象向右平移$\frac{π}{8}$个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从{1,3,5,7,9}中随机选取一个数为a,从{1,3,5}中随机选取一个数为b,则b>a的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
广告投入x/万元12345
销售收益y/万元23257
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示x与y之间存在线性相关关系,求y关于x的回归方程;
(Ⅲ)若广告投入6万元时,实际销售收益为7.3万元,求残差$\hat e$.
附:${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-}){(y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})^{2}}$=$\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若M为△ABC所在平面内的一点,且满足4$\overrightarrow{AM}$=2$\overrightarrow{AB}$+3$\overrightarrow{AC}$,直线BC与AM交于点D,则$\frac{|\overrightarrow{BD}|}{|\overrightarrow{BC}|}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a<b<0,则下列不等中不成立的是(  )
A.|a|>|b|B.$\frac{1}{a+b}>\frac{1}{a}$C.$\frac{1}{b}>\frac{1}{a}$D.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设非零向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$,则(  )
A.$\overrightarrow a⊥\overrightarrow b$B.$|\overrightarrow a|=|\overrightarrow b|$C.$\overrightarrow a∥\overrightarrow b$D.$|\overrightarrow a|>|\overrightarrow b|$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知无穷数列{an}的首项为1,数列{bn}满足${b_n}={a_{n+1}}-{a_n},n∈{N^*}$.
(1)若${b_n}={2^n}$,求数列{an}的前n项和;
(2)若bn=bn-1bn+1(n≥2),且${b_1}=1,{b_2}=b({b≠0,-1,-\frac{1}{2}})$,求证:
①数列{bn}的前6项积为定值;
②数列{an}中的任一项都不会在该数列中出现无数次.

查看答案和解析>>

同步练习册答案