精英家教网 > 高中数学 > 题目详情
10.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
广告投入x/万元12345
销售收益y/万元23257
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示x与y之间存在线性相关关系,求y关于x的回归方程;
(Ⅲ)若广告投入6万元时,实际销售收益为7.3万元,求残差$\hat e$.
附:${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-}){(y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})^{2}}$=$\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

分析 (Ⅰ)利用频率和为1列方程求出a的值;
(Ⅱ)计算平均数与回归系数,写出线性回归方程;
(Ⅲ)计算x=6时销售收益预测值,再求出残差值.

解答 解:(Ⅰ)设各小长方形的宽度为a,由频率直方图各小长方形的面积总和为1,
可知(0.08+0.1+0.14+0.12+0.04+0.02)•a=0.5a=1,
解得a=2;…(2分)
(Ⅱ)由题意,可知
$\overline{x}=\frac{1+2+3+4+5}{5}=3,\overline{y}=\frac{2+3+2+5+7}{5}=3.8$,
$\sum_{i=1}^5{{x_i}{y_i}=1×2+2}×3+3×2+4×5+5×7=69,\sum_{i=1}^5{x_i^2={1^2}+{2^2}}+{3^2}+{4^2}+{5^2}=55$,…(5分)
根据公式,可求得$\hat b=\frac{69-5×3×3.8}{{55-5×{3^2}}}=\frac{12}{10}=1.2,\hat a=3.8-1.2×3=0.2$,
所以y关于x的回归方程为$\hat y=1.2x+0.2$;…(8分)
(Ⅲ)当x=6时,销售收益预测值为$\hat y=1.2×6+0.2=7.4$(万元),
又实际销售收益为7.3万元,
所以残差$\hat e=7.3-7.4=-0.1$.…(12分)

点评 本题可惜了频率分布直方图与线性回归方程和残差的计算问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若数列{an}满足a1=1,log2an+1=log2an+1(n∈N*),它的前n项和为Sn,则Sn=(  )
A.2-21-nB.2n-1-1C.2n-1D.2-2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆x2+y2-6x+4y=3的圆心坐标与半径是(  )
A.$(-3,2)\;\;\;\;\;\;\;\sqrt{13}$B.$(3,-2)\;\;\;\;\;\;\;\sqrt{13}$C.(-3,2)4D.(3,-2)4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.x2(1+$\frac{2}{x}$)5展开式中的常数项是40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平行四边形ABCD中,E,F分别是BC,DC上的点,且满足$\overrightarrow{BE}$=$\overrightarrow{EC}$,$\overrightarrow{DF}$=2$\overrightarrow{FC}$,记$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,试以$\overrightarrow a,\overrightarrow b$为平面向量的一组基底.利用向量的有关知识解决下列问题;
(Ⅰ)用$\overrightarrow a,\overrightarrow b$来表示向量$\overrightarrow{DE}与\overrightarrow{BF}$;
(Ⅱ)若|AB|=3,|AD|=2,且|BF|=$\sqrt{3}$,求|$\overrightarrow{DE}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知($\frac{1}{2}$)a<($\frac{1}{2}$)b<1,则下列不等式成立的是(  )
A.(a-1)2>(b-1)2B.lna>lnbC.a+b>1D.$\sqrt{a}$<$\sqrt{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sin($\frac{π}{3}$+α)=$\frac{3}{5}$,$\frac{π}{6}$<α<$\frac{2π}{3}$,则cosα=$\frac{3\sqrt{3}-4}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数f(x)对任意实数x满足f(x+2)=f(x),f(2-x)=f(x),且当x∈[0,1]时,f(x)=x2+1,则方程$f(x)=\frac{1}{2}|x|$的解的个数为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且a=2,$cosC=-\frac{1}{4}$.
(Ⅰ)如果b=3,求c的值;
(Ⅱ)如果$c=2\sqrt{6}$,求sinB的值.

查看答案和解析>>

同步练习册答案