精英家教网 > 高中数学 > 题目详情
1.圆x2+y2-6x+4y=3的圆心坐标与半径是(  )
A.$(-3,2)\;\;\;\;\;\;\;\sqrt{13}$B.$(3,-2)\;\;\;\;\;\;\;\sqrt{13}$C.(-3,2)4D.(3,-2)4

分析 由题意将圆的方程化为标准方程,再求出圆心坐标和半径即可.

解答 解:将方程x2+y2-6x+4y=3化为标准方程:(x-3)2+(y+2)2=16,
则圆心坐标为(3,-2),半径为4.
故选:D.

点评 本题考查了将圆的一般方程用配方法化为标准方程,进而求出圆心坐标和半径,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知{an}是等比数列,a2+a5=18,a3+a6=9,求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a,b∈R,则“$\frac{{a}^{2}}{a-b}$<0”是“a<b”的(  )条件.
A.充分而不必要B.必要而不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=2x3-x+4在点(-$\frac{1}{2}$,$\frac{17}{4}$)处的切线的斜率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知角θ的终边经过点$P(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$,则tanθ的值为(  )
A.$-\sqrt{3}$B.-$\frac{{\sqrt{3}}}{3}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{4}$.
(1)求f(x)的表达式;
(2)将函数f(x)的图象向右平移$\frac{π}{8}$个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列判断错误的个数有(  )
(1)由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)得到回归直线方程$\hat y=\hat bx+\hat a$,此直线必经过样本点中心
(2)用数学归纳法证明等式1+2+3+…+2n=$\frac{{2}^{n}({2}^{n}+1)}{2}$(n≥2,n∈N*)的过程中,第一步归纳基础,等式左边的式子是1+2
(3)关于实数x的不等式关系x+$\frac{1}{x}$≥2恒成立
(4)“am2<bm2”是“a<b”的必要不充分条件.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
广告投入x/万元12345
销售收益y/万元23257
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示x与y之间存在线性相关关系,求y关于x的回归方程;
(Ⅲ)若广告投入6万元时,实际销售收益为7.3万元,求残差$\hat e$.
附:${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-}){(y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})^{2}}$=$\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y(m)与汽车的车速x(km/h)满足下列关系:y=$\frac{nx}{100}$+$\frac{x^2}{400}$(n为常数,且n∈N).
我们做过两次刹车试验,第一次刹车时车速为40km/h,有关数据如图所示,其中$\left\{\begin{array}{l}5<{y_1}<7\\ 13<{y_2}<15.\end{array}\right.$
(1)求出n的值;
(2)要使刹车距离不超过18.4m,则行驶的最大速度应为多少?

查看答案和解析>>

同步练习册答案