精英家教网 > 高中数学 > 题目详情
11.已知{an}是等比数列,a2+a5=18,a3+a6=9,求an

分析 利用等比数列的通项公式求出公比,从而能求出首项,由此能求出an

解答 解:∵{an}是等比数列,a2+a5=18,a3+a6=9,
∴$q=\frac{{a}_{3}+{a}_{6}}{{a}_{2}+{a}_{5}}$=$\frac{9}{18}$=$\frac{1}{2}$,
∴$\frac{1}{2}{a}_{1}+\frac{1}{16}{a}_{1}$=18,解得a1=32,
∴an=32×$(\frac{1}{2})^{n-1}$.

点评 本题考查等比数列等基础知识,考查数据处理能力、运算求解能力,考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.公差不为0的等差数列{an}中,Sn为其前n项和,S8=S13,且a15+am=0,则m的值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.以下关于向量说法的四个选项中正确的选项是(  )
A.若任意向量$\overrightarrow a与\overrightarrow b$共线且$\overrightarrow a$为非零向量,则有唯一一个实数λ,使得$\overrightarrow a=λ\overrightarrow b$
B.对于任意非零向量$\overrightarrow a与\overrightarrow b$,若$(\overrightarrow a+\overrightarrow b)•(\overrightarrow a-\overrightarrow b)=0$,则$|{\overrightarrow a}|=|{\overrightarrow b}|$
C.任意非零向量$\overrightarrow a与\overrightarrow b$满足$|{\overrightarrow a•\overrightarrow b}|=|{\overrightarrow a}||{\overrightarrow b}|$,则$\overrightarrow a与\overrightarrow b$同向
D.若A,B,C三点满足$\overrightarrow{OA}=\frac{2}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$,则点A是线段BC的三等分点且离C点较近

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,在区间(-1,1)上既是奇函数又是增函数的是(  )
A.y=tanxB.y=-x3-3xC.y=|sinx|D.y=$\frac{1}{x+1}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β∈R,且ab≠0,α≠kπ(k∈Z),若f(2015)=5,则f(2016)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在锐角△ABC中,角A,B,C的对边分别为a,b,c,满足$\frac{2b-c}{a}$=$\frac{cosC}{cosA}$.
(1)求角A的大小;
(2)若a=$\sqrt{13}$,△ABC的面积S△ABC=3$\sqrt{3}$,求b+c的值,;
(3)若函数f(x)=2sinxcos(x+$\frac{π}{6}$),求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是(  )
A.$\frac{3π}{10}$B.$\frac{3π}{20}$C.$1-\frac{3π}{10}$D.$1-\frac{3π}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若数列{an}满足a1=1,log2an+1=log2an+1(n∈N*),它的前n项和为Sn,则Sn=(  )
A.2-21-nB.2n-1-1C.2n-1D.2-2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆x2+y2-6x+4y=3的圆心坐标与半径是(  )
A.$(-3,2)\;\;\;\;\;\;\;\sqrt{13}$B.$(3,-2)\;\;\;\;\;\;\;\sqrt{13}$C.(-3,2)4D.(3,-2)4

查看答案和解析>>

同步练习册答案