精英家教网 > 高中数学 > 题目详情
13.下列判断错误的个数有(  )
(1)由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)得到回归直线方程$\hat y=\hat bx+\hat a$,此直线必经过样本点中心
(2)用数学归纳法证明等式1+2+3+…+2n=$\frac{{2}^{n}({2}^{n}+1)}{2}$(n≥2,n∈N*)的过程中,第一步归纳基础,等式左边的式子是1+2
(3)关于实数x的不等式关系x+$\frac{1}{x}$≥2恒成立
(4)“am2<bm2”是“a<b”的必要不充分条件.
A.4B.3C.2D.1

分析 根据回归直线方程过样本点中心判断(1)正确;
用数学归纳法证明时第一步令n=1求出等式左边式子即可判断(2)正确;
x+$\frac{1}{x}$≥2在x>0恒成立,x<0不成立,判断(3)错误;
判断“am2<bm2”是“a<b”的充分不必要条件,得(4)错误.

解答 解:对于(1),根据回归直线方程$\hat y=\hat bx+\hat a$必过样本点中心($\overline{x}$,$\overline{y}$),判断(1)正确;
对于(2),数学归纳法证明等式1+2+3+…+2n=$\frac{{2}^{n}({2}^{n}+1)}{2}$(n≥2,n∈N*)时,
第一步是n=1,等式左边为1+2,命题(2)正确;
对于(3),关于实数x的不等式关系x+$\frac{1}{x}$≥2在x>0恒成立,
x<0不成立,∴命题(3)错误;
对于(4),“am2<bm2”时,“a<b”成立,充分性成立;
“a<b”时,“am2<bm2”不成立,必要性不成立;
是充分不必要条件,(4)错误.
综上,正确的命题序号是(1)、(2)共2个.
故选:C.

点评 本题考查了线性回归方程、数学归纳法以及基本不等式的应用问题,也考查了命题真假的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是(  )
A.$\frac{3π}{10}$B.$\frac{3π}{20}$C.$1-\frac{3π}{10}$D.$1-\frac{3π}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.以圆形摩天轮的轴心O为原点,水平方向为x轴,在摩天轮所在的平面建立直角坐标系,设摩天轮的半径为20米,把摩天轮上的一个吊篮看作一个点P0,起始时点P0在-$\frac{π}{6}$的终边上,OP0绕O按逆时针方向作匀速旋转运动,其角速度为$\frac{π}{5}$(弧度/分),经过t分钟后,OP0到达OP,记P点的横坐标为m,则m关于时间t的函数图象为 (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆x2+y2-6x+4y=3的圆心坐标与半径是(  )
A.$(-3,2)\;\;\;\;\;\;\;\sqrt{13}$B.$(3,-2)\;\;\;\;\;\;\;\sqrt{13}$C.(-3,2)4D.(3,-2)4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设全集U={1,2,3,4,5},集合A={1,2},B={2,4},则CU(A∪B)=(  )
A.{1,3,4,5}B.{1,4}C.{1,2,4}D.{3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.x2(1+$\frac{2}{x}$)5展开式中的常数项是40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平行四边形ABCD中,E,F分别是BC,DC上的点,且满足$\overrightarrow{BE}$=$\overrightarrow{EC}$,$\overrightarrow{DF}$=2$\overrightarrow{FC}$,记$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,试以$\overrightarrow a,\overrightarrow b$为平面向量的一组基底.利用向量的有关知识解决下列问题;
(Ⅰ)用$\overrightarrow a,\overrightarrow b$来表示向量$\overrightarrow{DE}与\overrightarrow{BF}$;
(Ⅱ)若|AB|=3,|AD|=2,且|BF|=$\sqrt{3}$,求|$\overrightarrow{DE}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sin($\frac{π}{3}$+α)=$\frac{3}{5}$,$\frac{π}{6}$<α<$\frac{2π}{3}$,则cosα=$\frac{3\sqrt{3}-4}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设m∈N*,且m<25,则(20-m)(21-m)…(26-m)等于(  )
A.$A_{26-m}^7$B.$C_{26-m}^7$C.$A_{20-m}^7$D.$A_{26-m}^6$

查看答案和解析>>

同步练习册答案