精英家教网 > 高中数学 > 题目详情
18.x2(1+$\frac{2}{x}$)5展开式中的常数项是40.

分析 先求出(1+$\frac{2}{x}$)5展开式中含$\frac{1}{{x}^{2}}$的项,再计算x2(1+$\frac{2}{x}$)5展开式中的常数项.

解答 解:(1+$\frac{2}{x}$)5展开式中的通项公式为:
Tr+1=${C}_{5}^{r}$•${(\frac{2}{x})}^{r}$,
当r=2时,${C}_{5}^{2}$•${(\frac{2}{x})}^{2}$=$\frac{40}{{x}^{2}}$;
∴x2(1+$\frac{2}{x}$)5展开式中的常数项是x2•$\frac{40}{{x}^{2}}$=40.
故答案为:40.

点评 本题考查了二项展开式通项公式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图所示是沿圆锥的两条母线将圆锥削去一部分后得几何体的三视图,其体积为$\frac{16π}{9}+\frac{2\sqrt{3}}{3}$,则圆锥的母线长为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4D.$\sqrt{2}+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=2x3-x+4在点(-$\frac{1}{2}$,$\frac{17}{4}$)处的切线的斜率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{4}$.
(1)求f(x)的表达式;
(2)将函数f(x)的图象向右平移$\frac{π}{8}$个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列判断错误的个数有(  )
(1)由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)得到回归直线方程$\hat y=\hat bx+\hat a$,此直线必经过样本点中心
(2)用数学归纳法证明等式1+2+3+…+2n=$\frac{{2}^{n}({2}^{n}+1)}{2}$(n≥2,n∈N*)的过程中,第一步归纳基础,等式左边的式子是1+2
(3)关于实数x的不等式关系x+$\frac{1}{x}$≥2恒成立
(4)“am2<bm2”是“a<b”的必要不充分条件.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从{1,3,5,7,9}中随机选取一个数为a,从{1,3,5}中随机选取一个数为b,则b>a的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
广告投入x/万元12345
销售收益y/万元23257
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示x与y之间存在线性相关关系,求y关于x的回归方程;
(Ⅲ)若广告投入6万元时,实际销售收益为7.3万元,求残差$\hat e$.
附:${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-}){(y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})^{2}}$=$\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a<b<0,则下列不等中不成立的是(  )
A.|a|>|b|B.$\frac{1}{a+b}>\frac{1}{a}$C.$\frac{1}{b}>\frac{1}{a}$D.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<1}\\{{x}^{2}+ax,x>1}\end{array}\right.$,若f(f(0))=4a,则实数a等于(  )
A.$\frac{1}{2}$B.$\frac{4}{5}$C.2D.9

查看答案和解析>>

同步练习册答案