精英家教网 > 高中数学 > 题目详情
6.已知定义在R上的函数f(x)对任意实数x满足f(x+2)=f(x),f(2-x)=f(x),且当x∈[0,1]时,f(x)=x2+1,则方程$f(x)=\frac{1}{2}|x|$的解的个数为(  )
A.2B.4C.6D.8

分析 利用周期和对称性作出f(x)的函数图象,根据f(x)与y=$\frac{1}{2}$|x|的函数图象的交点个数得出结论.

解答 解:∵f(x+2)=f(x),∴f(x)的周期为2,
∵f(2-x)=f(x),∴f(x)的图象关于直线x=1对称,
作出y=f(x)与y=$\frac{1}{2}$|x|的函数图象如图所示:

由图象可知两函数图象共有6个交点,
∴方程f(x)=$\frac{1}{2}$|x|共有6个解.
故选C.

点评 本题考查了方程的解与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.函数y=2x3-x+4在点(-$\frac{1}{2}$,$\frac{17}{4}$)处的切线的斜率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
广告投入x/万元12345
销售收益y/万元23257
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示x与y之间存在线性相关关系,求y关于x的回归方程;
(Ⅲ)若广告投入6万元时,实际销售收益为7.3万元,求残差$\hat e$.
附:${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-}){(y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})^{2}}$=$\frac{\sum_{i=1}^{n}{{x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{\sum_{i=1}^{n}{x}_{i}^{2}-{{n}_{x}^{-}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a<b<0,则下列不等中不成立的是(  )
A.|a|>|b|B.$\frac{1}{a+b}>\frac{1}{a}$C.$\frac{1}{b}>\frac{1}{a}$D.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=m-|x-2|,m∈R,
且f(x+2)≥0的解集为[-3,3].
(1)求m的值;
(2)若p,q,r为正实数,且p+q+r=m,求证:p2+q2+r2≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设非零向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$,则(  )
A.$\overrightarrow a⊥\overrightarrow b$B.$|\overrightarrow a|=|\overrightarrow b|$C.$\overrightarrow a∥\overrightarrow b$D.$|\overrightarrow a|>|\overrightarrow b|$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.行驶中的汽车,在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y(m)与汽车的车速x(km/h)满足下列关系:y=$\frac{nx}{100}$+$\frac{x^2}{400}$(n为常数,且n∈N).
我们做过两次刹车试验,第一次刹车时车速为40km/h,有关数据如图所示,其中$\left\{\begin{array}{l}5<{y_1}<7\\ 13<{y_2}<15.\end{array}\right.$
(1)求出n的值;
(2)要使刹车距离不超过18.4m,则行驶的最大速度应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<1}\\{{x}^{2}+ax,x>1}\end{array}\right.$,若f(f(0))=4a,则实数a等于(  )
A.$\frac{1}{2}$B.$\frac{4}{5}$C.2D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设(1-2x)6=a0+a1x+a2x2+…+a6x6,则a0+a2+a4+a6=(  )
A.1B.-1C.365D.-365

查看答案和解析>>

同步练习册答案