分析 (1)根据f(x+2)的解析式得出f(x+2)的单调性和奇偶性,根据解集得出f(5)=0,故而可求出m;
(2)利用柯西不等式即可得出结论.
解答 解:(1)f(x+2)=m-|x|=$\left\{\begin{array}{l}{m+x,x≤0}\\{m-x,x>0}\end{array}\right.$,
∴f(x+2)在(-∞,0]上单调递增,在(0,+∞)上单调递减,
又f(x+2)是偶函数,f(x+2)≥0的解集是[-3,3],
∴m-3=0,即m=3.
(2)证明:由(1)知,p+q+r=3,又p,q,r为正实数,
∴由柯西不等式得,(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r)2=32=9,
∴p2+q2+r2≥3.
点评 本题考查了函数的单调性与不等式的解法,柯西不等式的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $A_{26-m}^7$ | B. | $C_{26-m}^7$ | C. | $A_{20-m}^7$ | D. | $A_{26-m}^6$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com