精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x2-2ax+b,f(-1)=-8.对?x∈R,都有f(x)≥f(-1)成立;记集合A={x|f(x)>0},B={x||x-t|≤1}.
(I)当t=1时,求(CRA)∪B.
(II)设命题P:A∩B≠空集,若¬P为真命题,求实数t的取值范围.
分析:本题考查的是集合运算和命题的真假判断与应用的综合类问题.在解答时:
(I)首先根据条件利用二次函数最值得性质求的二次函数的解析式,进而将集合A具体化,又因为t=1所以可以将集合B具体化,从而问题即可获得解答;
(Ⅱ)首先要将条件进行转化,即命题P:A∩B≠空集为假命题,再结合集合A、B的特征利用数轴即可获得必要的条件,解不等式组即可获得问题的解答.
解答:解:由题意(-1,-8)为二次函数的顶点,
∴f(x)=2(x+1)2-8=2(x2+2x-3).
A={x|x<-3或x>1}.
(Ⅰ)B={x||x-1|≤1}={x|0≤x≤2}.
∴(CRA)∪B={x|-3≤x≤1}∪{x|0≤x≤2}={x|-3≤x≤2}.
∴(CRA)∪B={x|-3≤x≤2}.
(Ⅱ)∵B={x|t-1≤x≤t+1}.且由题意知:命题P:A∩B≠空集为假命题,
所以必有:
t-1≥-3
t+1≤1
?
t≥-2
t≤0

∴实数t的取值范围是[-2,0].
点评:本题考查的是集合运算和命题的真假判断与应用的综合类问题.在解答的过程当中充分体现了二次函数的知识、集合运算的知识以及命题的知识.同时问题转化的思想也在此题中得到了很好的体现.值得同学们体会和反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案