精英家教网 > 高中数学 > 题目详情
选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.
分析:(Ⅰ)可求得f(x)=
x+1,(x≥2)
-3x+9,(x<2)
,利用函数的单调性即可求得f(x)的最小值,从而可求得m;
(Ⅱ)由(Ⅰ)知m=3,于是|x-a|+|x+2|≥3恒成立,利用绝对值不等式的几何意义可求得|x-a|+|x+2|≥|a+2|,当且仅当(x-a)(x+2)≤0时等号成立,从而可求得实数a的取值范围.
解答:解:(Ⅰ)f(x)=2|x-2|-x+5=
x+1,(x≥2)
-3x+9,(x<2)

显然,函数f(x)在区间(-∞,2)上单调递减,在区间[2,+∞)上单调递增,
所以函数f(x)的最小值m=f(2)=3.
(Ⅱ)由(Ⅰ)知m=3,|x-a|+|x+2|≥3恒成立,
由于|x-a|+|x+2|≥|(x-a)-(x+2)|=|a+2|,
等号当且仅当(x-a)(x+2)≤0时成立,
故|a+2|≥3,
解之得a≥1或a≤-5.
所以实数a的取值范围为a≥1或a≤-5.
点评:本题考查绝对值不等式的解法,掌握绝对值不等式的几何意义是解决问题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲:
设正有理数x是
2
的一个近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求证:y<
2

(Ⅱ)比较y与x哪一个更接近于
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)(选修4-5:不等式选讲)
已知a,b,c为正数,且a2+a2+c2=14,试求a+2b+3c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)选修4-5:不等式选讲
设函数,f(x)=|x-1|+|x-2|.
(I)求证f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范围.

查看答案和解析>>

同步练习册答案