精英家教网 > 高中数学 > 题目详情

【题目】抛物线y2=2px(p>0)的焦点为F,已知A,B为抛物线上的两个动点,且满足∠AFB=120°,过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则 的最大值为(
A.2
B.
C.1
D.

【答案】D
【解析】解:设|AF|=a,|BF|=b,连接AF、BF, 由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,
在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.
由余弦定理得,
|AB|2=a2+b2﹣2abcos120°=a2+b2+ab,
配方得,|AB|2=(a+b)2﹣ab,
又∵ab≤( 2
∴(a+b)2﹣ab≥(a+b)2 (a+b)2= (a+b)2
得到|AB|≥ (a+b).
所以
的最大值为
故选:D

设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2﹣ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,四个顶点构成的菱形的面积是4,圆过椭圆的上顶点作圆的两条切线分别与椭圆相交于两点(不同于点),直线的斜率分别为.

(1)求椭圆的方程;

(2)当变化时,①求的值;②试问直线是否过某个定点?若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(1)求a,b的值;
(2)判断并证明函数y=f(x)在区间(﹣1,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 在点(1,f(1))处的切线与x轴平行.
(Ⅰ)求实数a的值及f(x)的极值;
(Ⅱ)是否存在区间(t,t+ )(t>0),使函数f(x)在此区间上存在极值和零点?若存在,求实数t的取值范围,若不存在,请说明理由;
(Ⅲ)如果对任意的 ,有|f(x1)﹣f(x2)|≥k| |,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=x3﹣12x+8在区间[﹣3,3]上的最大值与最小值分别为M,m,则M﹣m的值为(
A.16
B.12
C.32
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知为椭圆上的点,且,过点的动直线与圆相交于两点,过点作直线的垂线与椭圆相交于点

(1)求椭圆的离心率;

(2)若,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,( )为定义域上的增函数, 是函数的导数,且的最小值小于等于0.

(1)求的值;

(2)设函数,且,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x﹣ ,且f(2)=
(1)求实数a的值;
(2)判断该函数的奇偶性;
(3)判断函数f(x)在(1,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知2Sn=3n+3.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足anbn=log3an , 求{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案