【题目】已知函数f(x)=2x﹣ ,且f(2)= .
(1)求实数a的值;
(2)判断该函数的奇偶性;
(3)判断函数f(x)在(1,+∞)上的单调性,并证明.
【答案】
(1)解:∵f(x)=2x﹣ ,且f(2)= ,
∴4﹣ = ,
∴a=﹣1
(2)解:由(1)得函数 ,定义域为{x|x≠0}关于原点对称
∵ = ,
∴函数 为奇函数
(3)解:函数f(x)在(1,+∞)上是增函数,
任取x1,x2∈(1,+∞),不妨设x1<x2,则 =
∵x1,x2∈(1,+∞)且x1<x2∴x2﹣x1>0,2x1x2﹣1>0,x1x2>0
∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),
∴f(x)在(1,+∞)上是增函数
【解析】(1)利用f(x)=2x﹣ ,且f(2)= ,求实数a的值;(2)利用奇偶函数的定义判断该函数的奇偶性;(3)判断函数f(x)在(1,+∞)上的单调性,利用定义进行证明.
【考点精析】关于本题考查的函数单调性的判断方法和函数的奇偶性,需要了解单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;偶函数的图象关于y轴对称;奇函数的图象关于原点对称才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线W,给出下列四个结论: ①曲线W关于原点对称;
②曲线W关于直线y=x对称;
③曲线W与x轴非负半轴,y轴非负半轴围成的封闭图形的面积小于 ;
④曲线W上的点到原点距离的最小值为2﹣
其中,所有正确结论的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线y2=2px(p>0)的焦点为F,已知A,B为抛物线上的两个动点,且满足∠AFB=120°,过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则 的最大值为( )
A.2
B.
C.1
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在函数 的所有切线中,有且仅有一条切线l与直线y=x垂直.
(1)求a的值和切线l的方程;
(2)设曲线y=f(x)在任一点处的切线倾斜角为α,求α的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知直线的参数方程为(为参数, 为倾斜角),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,曲线的极坐标方程为.
(Ⅰ)求曲线的普通方程和参数方程;
(Ⅱ)设与曲线交于, 两点,求线段的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点是圆上的任意一点,设为该圆的圆心,并且线段的垂直平分线与直线交于点.
(1)求点的轨迹方程;
(2)已知两点的坐标分别为, ,点是直线上的一个动点,且直线分别交(1)中点的轨迹于两点(四点互不相同),证明:直线恒过一定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=log3(1+x)﹣log3(1﹣x).
(1)判断函数f(x)的奇偶性,并加以证明;
(2)已知函数g(x)=log ,当x∈[ , ]时,不等式 f(x)≥g(x)有解,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点,圆C: ,
(1)过点向圆C引切线l,求切线l的方程;
(2)过点A作直线 交圆C于P,Q,且,求直线的斜率k;
(3)定点M,N在直线 上,对于圆C上任意一点R都满足,试求M,N两点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com