精英家教网 > 高中数学 > 题目详情

【题目】已知点,点是圆上的任意一点,设为该圆的圆心,并且线段的垂直平分线与直线交于点.

(1)求点的轨迹方程;

(2)已知两点的坐标分别为 ,点是直线上的一个动点,且直线分别交(1)中点的轨迹于两点(四点互不相同),证明:直线恒过一定点,并求出该定点坐标.

【答案】(1)(2)直线恒过一定点.

【解析】试题分析:(1)利用垂直平分线的性质可得,再结合椭圆的定义,可得点的轨迹方程;(2)设直线的方程为与椭圆方程联立,消去,利用根与系数的关系可得,利用两直线方程,及 的交点的横坐标为,可得,结合前面两式,化简可得.则当时,恒成立,直线过定点.试题解析:(Ⅰ)依题意有,

所以点的轨迹方程为:

(Ⅱ)依题意设直线的方程为:

代入椭圆方程得:

且: ①,

∵直线 ,直线

由题知 的交点的横坐标为4,得:

,即

即: ,整理得:

将①②代入③得:

化简可得:

变化时,上式恒成立,故可得:

所以直线恒过一定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(1)求a,b的值;
(2)判断并证明函数y=f(x)在区间(﹣1,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,( )为定义域上的增函数, 是函数的导数,且的最小值小于等于0.

(1)求的值;

(2)设函数,且,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x﹣ ,且f(2)=
(1)求实数a的值;
(2)判断该函数的奇偶性;
(3)判断函数f(x)在(1,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2x 的零点个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取20根棉花纤维进行统计,结果如下表:(记纤维长度不低于300的为“长纤维”,其余为“短纤维”)

纤维长度

甲地(根数)

3

4

4

5

4

乙地(根数)

1

1

2

10

6

(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过0.025的前提下认为“纤维长度与土壤环境有关系”.

甲地

乙地

总计

长纤维

短纤维

总计

附:(1)

(2)临界值表;

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(2)现从上述40根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆C1 和圆C2:x2+y2=b2 , 已知圆C2将椭圆C1的长轴三等分,且圆C2的面积为π.椭圆C1的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A,B,直线EA,EB与椭圆C1的另一个交点分别是点P,M.
(I)求椭圆C1的方程;
(Ⅱ)求△EPM面积最大时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知2Sn=3n+3.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足anbn=log3an , 求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长沙市物价监督部门为调研某公司新开发上市的一种产品销售价格的合理性,对某公司的该产品的销量与价格进行了统计分析,得到如下数据和散点图:

定价

10

20

30

40

50

60

年销量

1150

643

424

262

165

86

14.1

12.9

12.1

11.1

10.2

8.9

(参考数据:

(1)根据散点图判断, 哪一对具有的线性相关性较强(给出判断即可,不必说明理由)?

(2)根据(1)的判断结果及数据,建立关于的回归方程(方程中的系数均保留两位有效数字).

(3)定价为多少元/ 时,年销售额的预报值最大?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

同步练习册答案