分析 (1)由2x2-9x+4>0,解得x>4或x$<\frac{1}{2}$,可得A.可得∁RA.利用二次函数的单调性可得y=-x2+2x=-(x-1)2+1值域,即可得出B.
(2)A∪C=A,可得C⊆A.当m+1≥2m-1,即m≤2时,C=∅,满足条件.当m+1<2m-1,即m>2时,C⊆A,可得2m-1<$\frac{1}{2}$,或4≤m+1,解得m.
解答 解:(1)由2x2-9x+4>0,解得x>4或x$<\frac{1}{2}$,可得A=$(-∞,\frac{1}{2})$∪(4,+∞).
∴∁RA=$[\frac{1}{2},4]$.
∴y=-x2+2x=-(x-1)2+1∈[-8,1].
∴B=[-8,1].
(2)∵A∪C=A,∴C⊆A
①当m+1≥2m-1,即m≤2时,C=∅,满足条件.
②当m+1<2m-1,即m>2时,C⊆A,可得2m-1<$\frac{1}{2}$,或4≤m+1,解得m<$\frac{3}{4}$或m≥3.
∴m≥3.
综上可得:实数m的取值范围是(-∞,2]∪[3,+∞).
点评 本题考查了不等式的解法、集合的运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sin(α+$\frac{4π}{3}$) | B. | sin(α+$\frac{7π}{6}$) | C. | -sin(α+$\frac{π}{3}$) | D. | sin(α-$\frac{2π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(0)=0 | B. | f(0)>f(1) | C. | f(0)=-3 | D. | f(-1)>f($\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | $\frac{1}{8}$ | C. | 3 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com