精英家教网 > 高中数学 > 题目详情

【题目】已知函数F(x)= ,(a为实数).
(1)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由;
(2)若对任意的x≥1,都有1≤f(x)≤3,求a的取值范围.

【答案】
(1)解:函数F(x)= 定义域为R,

且F(﹣x)= =

① 若y=f(x)是偶函数,则对任意的x 都有f(x)=f(﹣x),

= ,即2x(a+1)=a+1,

解可得a=﹣1;

②若y=f(x)是奇函数,则对任意的x 都有f(x)=﹣f(﹣x),

=﹣ ,即2x(a﹣1)=1﹣a,

解可得a=1;

故当a=﹣1时,y=f(x)是偶函数,

当a=1时,y=f(x)是奇函数,

当a≠±1时,y=f(x)既非偶函数也非奇函数


(2)解:由f(x)≥1可得:2x+1≤a2x﹣1,即 ≤a﹣1

∵当x≥1时,函数y1= 单调递减,其最大值为1,

则必有a≥2,

同理,由f(x)≤3 可得:a2x﹣1≤32x+3,即a﹣3≤

∵当x≥1时,y2= 单调递减,且无限趋近于0,

故a≤3,

综合可得:2≤a≤3


【解析】(1)、根据题意,先求出函数的定义域,易得其定义域关于原点对称,求出F(﹣x)的解析式,进而分2种情况讨论:①若y=f(x)是偶函数,②若y=f(x)是奇函数,分别求出每种情况下a的值,综合即可得答案;(2)根据题意,由f(x)的范围,分2种情况进行讨论:f(x)≥1以及f(x)≤3,分析求出每种情况下函数的恒成立的条件,可得a的值,进而综合2种情况,可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的右焦点为( ,0),离心率为
(1)求椭圆C的标准方程;
(2)若动点P(x0 , y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,

(Ⅰ)求证:AC⊥A1B;
(Ⅱ)求二面角A﹣A1C﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,由于函数f(x)=sin(π﹣ωx)sin( +φ)﹣sin(ωx+ )sinφ(ω>0)的图象部分数据已污损,现可以确认点C( ,0),其中A点是图象在y轴左侧第一个与x轴的交点,B点是图象在y轴右侧第一个最高点,则f(x)在下列区间中是单调的(
A.(0,
B.(
C.( ,2π)
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若y=f(x)在(0,+∞)恒单调递减,求a的取值范围;
(2)若函数y=f(x)有两个极值点x1 , x2(x1<x2),求a的取值范围并证明x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合: ①M={(x,y)|y= };
②M={(x,y)|y=log2x};
③M={(x,y)|y=2x﹣2};
④M={(x,y)|y=sinx+1}.
其中是“垂直对点集”的序号是(
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax(a>0).
(1)当a=2时,解关于x的不等式﹣3<f(x)<5;
(2)对于给定的正数a,有一个最大的正数M(a),使得在整个区间[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;
(3)函数y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.
(1)求证:PA⊥BC;
(2)求此三棱锥的全面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣x.
(1)求函数f(x)的单调区间;
(2)若方程f(x)=m(m<﹣2)有两个相异实根x1 , x2 , 且x1<x2 , 证明:x1x22<2.

查看答案和解析>>

同步练习册答案