【题目】已知函数f(x)=lnx﹣x.
(1)求函数f(x)的单调区间;
(2)若方程f(x)=m(m<﹣2)有两个相异实根x1 , x2 , 且x1<x2 , 证明:x1x22<2.
【答案】
(1)解:f(x)=lnx﹣x的定义域为(0,+∞)
令f′(x)<0得x>1,令f′(x)>0得0<x<1
所以函数f(x)=lnx﹣x的单调减区间是(1,+∞),单调递增区间(0,1)
(2)解:由(1)可设f(x)=m(m<﹣2)有两个相异实根x1,x2,满足lnx﹣x﹣m=0
且0<x1<1,x2>1,lnx1﹣x1﹣m=lnx2﹣x2﹣m=0
由题意可知lnx2﹣x2=m<﹣2<ln2﹣2
又由(1)可知f(x)=lnx﹣x在(1,+∞)递减
故x2>2
令g(x)=lnx﹣x﹣m
g(x1)﹣g( )=﹣x2+ +3lnx2﹣ln2
令h(t)= +3lnt﹣ln2(t>2),
则h′(t)=﹣ .
当t>2时,h′(t)<0,h(t)是减函数,所以h(t)<h(2)=2ln2﹣ <0.
所以当x2>2 时,g(x1)﹣g( )<0,即g(x1)<g( )
因为g(x)在(0,1)上单调递增,
所以x1< ,故x1x22<2.
综上所述:x1x22<2
【解析】(1)确定函数的定义域,求导数,即可求函数f(x)的单调区间;(2)证明x2>2,构造g(x)=lnx﹣x﹣m,证明g(x)在(0,1)上单调递增,即可证明结论.
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】已知函数F(x)= ,(a为实数).
(1)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由;
(2)若对任意的x≥1,都有1≤f(x)≤3,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}满足2Sn=(an+2)bn , 其中Sn是数列{an}的前n项和.
(1)若数列{an}是首项为 ,公比为﹣ 的等比数列,求数列{bn}的通项公式;
(2)若bn=n,a2=3,求证:数列{an}满足an+an+2=2an+1 , 并写出数列{an}的通项公式;
(3)在(2)的条件下,设cn= , 求证:数列{cn}中的任意一项总可以表示成该数列其他两项之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△AnBnCn的三边长分别为an , bn , cn , △AnBnCn的面积为Sn , n=1,2,3…若b1>c1 , b1+c1=2a1 , an+1=an , , ,则( )
A.{Sn}为递减数列
B.{Sn}为递增数列
C.{S2n﹣1}为递增数列,{S2n}为递减数列
D.{S2n﹣1}为递减数列,{S2n}为递增数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,AB=AC=PB=PC=10,PA=8,BC=12,点M在平面PBC内,且AM=7,设异面直线AM与BC所成角为α,则cosα的最大值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},a1=a(a∈R),an+1= (n∈N*).
(1)若数列{an}从第二项起每一项都大于1,求实数a的取值范围;
(2)若a=﹣3,记Sn是数列{an}的前n项和,证明:Sn<n+ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cos( ﹣x)cos(x+ )+ . (Ⅰ)求函数f(x)的最小正周期和单调递减区间;
(Ⅱ)求函数f(x)在区间[0, ]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:
(Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com