【题目】如图,在三棱锥P﹣ABC中,AB=AC=PB=PC=10,PA=8,BC=12,点M在平面PBC内,且AM=7,设异面直线AM与BC所成角为α,则cosα的最大值为( )
A.
B.
C.
D.
【答案】A
【解析】解:取BC中点N,连结AN,PN,∵AB=AC=PB=PC=10,BC=12,∴AN=PN=8,
∵PA=8,∴△PAN是等边三角形,∠ANP=60°.
∵AN⊥BC,PN⊥BC,∴∠ANP为二面角A﹣BC﹣P的平面角.
过A作AO⊥平面PBC,连结OM,则O为PN的中点,∴ON= PN=4,∴AO= =4 .
∴OM= =1.∴M的轨迹是以O为圆心,以1为半径的圆.
以平面PBC内过O点平行于BC的直线为x轴,以PN为y轴,以OA为z轴建立空间直角坐标系如图.
则A(0,0,4 ),B(﹣6,4,0),C(6,4,0),设M(x,y,0),则x2+y2=1.
=(x,y,﹣4 ), =(12,0,0).| |=7,| |=12, =12x.
∴cosα= = = .
∴当x=1时,cosα取得最大值 .
故选A.
【考点精析】掌握异面直线及其所成的角是解答本题的根本,需要知道异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.
科目:高中数学 来源: 题型:
【题目】已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1 , y1)∈M,存在(x2 , y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合: ①M={(x,y)|y= };
②M={(x,y)|y=log2x};
③M={(x,y)|y=2x﹣2};
④M={(x,y)|y=sinx+1}.
其中是“垂直对点集”的序号是( )
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用数学归纳法证明1+2+3+…+n2= ,则当n=k+1时左端应在n=k的基础上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣x.
(1)求函数f(x)的单调区间;
(2)若方程f(x)=m(m<﹣2)有两个相异实根x1 , x2 , 且x1<x2 , 证明:x1x22<2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,b∈R,函数f(x)=4ax2﹣2bx﹣a+b的定义域为[0,1].
(1)当a=1时,函数f(x)在定义域内有两个不同的零点,求b的取值范围;
(2)设f(x)的最大值和最小值分别为M和m,求证:M+m>0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】20世纪70年代,流行一种游戏﹣﹣﹣角谷猜想,规则如下:任意写出一个自然数n,按照以下的规律进行变换:如果n是个奇数,则下一步变成3n+1;如果n是个偶数,则下一步变成 ,这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确的说是落入底部的4﹣2﹣1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的i值为6,则输入的n值为( )
A.5
B.16
C.5或32
D.4或5或32
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为 (α为参数),在以原点为极点,X轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ﹣ )= .
(1)求C的普通方程和l的倾斜角;
(2)若l和C交于A,B两点,且Q(2,3),求|QA|+|QB|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com