精英家教网 > 高中数学 > 题目详情

【题目】执行如图的程序框图,则输出K的值为(
A.98
B.99
C.100
D.101

【答案】B
【解析】解:模拟程序的运行,可得 K=1,S=0
S=lg2
不满足条件S≥2,执行循环体,K=2,S=lg2+lg =lg3
不满足条件S≥2,执行循环体,K=3,S=lg3+lg =lg4

观察规律,可得:
不满足条件S≥2,执行循环体,K=99,S=lg99+lg =lg100=2
满足条件S≥2,退出循环,输出K的值为99.
故选:B.
【考点精析】解答此题的关键在于理解程序框图的相关知识,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,AB=AC=PB=PC=10,PA=8,BC=12,点M在平面PBC内,且AM=7,设异面直线AM与BC所成角为α,则cosα的最大值为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,若函数f(x)有四个零点,则实数a的取值范围是(
A.(﹣∞,﹣e)
B.(﹣∞,﹣
C.(﹣∞,﹣
D.(﹣∞,﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为 ,F1 , F2分别为椭圆的左右焦点,P为椭圆上任意一点,△PF1F2的周长为 ,直线l:y=kx+m(k≠0)与椭圆C相交于A,B两点. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l与圆x2+y2=1相切,过椭圆C的右焦点F2作垂直于x轴的直线,与椭圆相交于M,N两点,与线段AB相交于一点(与A,B不重合).求四边形MANB面积的最大值及取得最大值时直线l的方程;
(Ⅲ)若|AB|=2,试判断直线l与圆x2+y2=1的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:
(Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设样本数据x1 , x2 , …,x2017的方差是4,若yi=2xi﹣1(i=1,2,…,2017),则y1 , y2 , …y2017的方差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mln(x+1),g(x)= (x>﹣1).
(Ⅰ)讨论函数F(x)=f(x)﹣g(x)在(﹣1,+∞)上的单调性;
(Ⅱ)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系xoy中,曲线C1的参数方程为 (β为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4cosθ.
(Ⅰ)将曲线C1的方程化为极坐标方程;
(Ⅱ)已知直线l的参数方程为 <α<π,t为参数,t≠0),l与C1交与点A,l与C2交与点B,且|AB|= ,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在实数集R上的函数f(x)满足f(x+1)= + ,则f(0)+f(2017)的最大值为(
A.1﹣
B.1+
C.
D.

查看答案和解析>>

同步练习册答案