【题目】已知数列{an},{bn}满足2Sn=(an+2)bn , 其中Sn是数列{an}的前n项和.
(1)若数列{an}是首项为 ,公比为﹣ 的等比数列,求数列{bn}的通项公式;
(2)若bn=n,a2=3,求证:数列{an}满足an+an+2=2an+1 , 并写出数列{an}的通项公式;
(3)在(2)的条件下,设cn= , 求证:数列{cn}中的任意一项总可以表示成该数列其他两项之积.
【答案】
(1)解:因为数列{an}是首项为 ,公比为- 的等比数列
所以 ,
所以
(2)解:若bn=n,则2Sn=(an+2)n,所以2Sn+1=(n+1)(an+1+2)
所以2an+1=(n+1)an+1﹣nan+2,即(n﹣1)an+1+2=nan
所以nan+2+2=(n+1)an+1
所以nan+2﹣(n﹣1)an+1=(n+1)an+1﹣nan
所以an+an+2=2an+1
又由2S1=a1+2,得:a1=2
所以数列{an}是首项为2公差为1的等差数列
所以an=n+1
(3)解:证明:由(2)知 ,
对于给定的n∈N*,若存在k,t≠n,且t,k∈N*,使得cn=ckct,
只需
只需
取k=n+1,则t=n(n+2)
所以对于数列{cn}中的任意一项 ,
都存在Cn+1= 与Cn(n+2)= ,使得cn=cn+1cn(n+2),
即数列{cn}中的任意一项总可以表示成该数列其他两项之积
【解析】(1)通过数列{an}是首项为 ,公比为- 的等比数列求出通项公式,然后求解 .(2)若bn=n,通过an=Sn﹣Sn+1 , 得到递推关系式,化简推出数列{an}是首项为2公差为1的等差数列,求出通项公式.(3)由(2)知 ,对于给定的n∈N* , 若存在k,t≠n,且t,k∈N* , 使得cn=ckct , 证明 ,构造 ,然后证明数列{cn}中的任意一项总可以表示成该数列其他两项之积.
【考点精析】认真审题,首先需要了解数列的前n项和(数列{an}的前n项和sn与通项an的关系),还要掌握数列的通项公式(如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,
(Ⅰ)求证:AC⊥A1B;
(Ⅱ)求二面角A﹣A1C﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣2ax(a>0).
(1)当a=2时,解关于x的不等式﹣3<f(x)<5;
(2)对于给定的正数a,有一个最大的正数M(a),使得在整个区间[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;
(3)函数y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数y=f(x)的图象恰好经过k个格点,则称函数y=f(x)为k阶格点函数.已知函数:①y=x2;②y=2sinx,③y=πx﹣1;④y=cos(x+ ).其中为一阶格点函数的序号为(注:把你认为正确论断的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用数学归纳法证明1+2+3+…+n2= ,则当n=k+1时左端应在n=k的基础上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣x.
(1)求函数f(x)的单调区间;
(2)若方程f(x)=m(m<﹣2)有两个相异实根x1 , x2 , 且x1<x2 , 证明:x1x22<2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和 ,数列{bn}的前n项和为Bn .
(1)求数列{an}的通项公式;
(2)设 ,求数列{cn}的前n项和Cn;
(3)证明: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com